
Component-oriented approaches to

context-aware computing

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

1 Motivation and goals

Context-awareness is emerging as an essential component of many user-focused
software domains. It is especially integral to pervasive or ambient computing,
but can be used to control the behaviour of any system that adapts to the
circumstances in which it is used.

Like most new software projects, many existing context-aware systems have
been constructed using object- or component-oriented programming techniques.
Experience has shown that objects have difficulty in addressing some of the
facets of highly adaptive and highly contextualised systems. These include:

– the need to create object views over information with significant ontological
structure;

– consistently supporting multiple views of the same information at different
levels of abstraction;

– the complexity of selecting and matching components and interfaces; and
– the mixing of concerns across different levels of the design space.

Many of the techniques being used ad hoc in context-aware applications might
be better captured in tools, languages or methods; conversely new developments
in infrastructure might be helpful – or not! – to the developers of context-aware
systems.

Goals and organisation

The workshop was organised to address these issues. We requested short contri-
butions in two strands:

1. Research and practitioner contributions on topics highlighting both the con-
tributions object and component technology makes to context-aware dis-
tributed computing and the issues and shortcomings of current approaches

2. “What if we could” systems that can be used as a basis for case studies to
be expanded during the workshop to drive discussion

This paper appears in the ECOOP 2004 workshop reader, ed. Jacques Malenfant and
Bjarte Østvold. Copyright c© 2004, Springer Verlag. Reproduced with permission.



We received a wide range of contributions covering middleware issues, in-
terface adaptation, navigating large information spaces and embedded systems,
each highlighting some particular aspect of constructing context-aware adaptive
systems from components.

The workshop was divided into three parts: short presentations and two
discussion groups exploring a different issue in more detail. The rest of this
report summarises the contributions (section 2), explore two discussion topics
(section 3), and offers some conclusions (section 4). Appendix A contains the
names and contact details of the participants.

2 Summary of contributions

Three major themes were identifiable in the contributions:

– contributions focusing on the extension of object models to provide context-
awareness within a largely standard programming infrastructure;

– work on component selection and discovery, and the problems inherent in
performing these tasks in an open environment; and

– systems integrating software closely with real-world artefacts which need to
provide virtual analogues of physical capabilities.

In introducing the workshop, Simon Dobson posed four questions for context-
aware systems:

1. How do we engineer systems that are stable under minor perturbations?
2. How can we compose components into larger functions in a way that users

can grasp clearly?
3. How do we balance information collected to inform adaptability against the

privacy and security concerns arising from its abuse?
4. What does it mean for an adaptive system to be “correct”, when some of its

function derives from the changing environment?

Most of these questions occur in “ordinary” systems engineering with compo-
nents and distributed objects[1], but are thrown into high relief by the introduc-
tion of context and adaptability. The use of components can be used to address
issues of composition and correctness, but it is not sufficient for a context-aware
system to behave correctly in any given context: it must also behave correctly
dynamically, retaining continuity and stability for users even in the presence of
adaptation.

Extending object models involves allowing objects to sense and adapt to
context, without compromising the encapsulation properties of the underlying
object model. Aline Senart gave an overview of the “sentient objects” model
for pervasive systems. A sentient objects system is composed of a number of
entities encapsulating a local view of the system’s context and communicating via
events. The event system is built around a scalable core that provides location-
awareness, robust group management, and a predictive routing infrastructure
for managing the sporadic disconnections of devices from the network.



From a programming perspective, sentient objects provide a local context
model in which contexts are arranged into a hierarchy. An inferencing system
determines which context the system is in, and triggers actions based on this.
The view of context is strictly local, making sentient objects behave externally
like “normal” objects hiding their context-sensitivity.

The “contextors” system described by Joëlle Coutaz and Gaëtan Rey pro-
vides a well-developed approach to “plastic” user interfaces that can be re-
modelled and re-presented on a range of devices without compromising the in-
tention or usability of the interface. The system is based around the description
of abstract meta-interfaces and associated meta-data, together with a family of
possible implementations. As the context of the user and the task being pursued
evolve, the implementation can select a different implementation of the interface
that is best able to satisfy the environmental and task constraints, and re-map
the interface without losing application continuity.

Contextors can both produce and consume context and communicate via
events. They are best regarded as context transformers – closer to actors than
fully stateful objects.

The problem of component discovery is made even more complex by popu-
lations of adaptive components whose matching requirements follower a richer
model. Peter Rigole presented a model of resource-aware components in which
each component declares the external resources it needs in its interface. The in-
terface then forms a contract which is satisfied and settled when the component
is instanciated. The supporting middleware signs the contract to confirm that
its requested resources are available, allowing better run-time confidence in and
analysis of the component system. Component requirements may be parame-
terised by the context, allowing run-time adaptation through the re-negotiation
of the components satisfying the contract or altering the contract as the task
evolves.

Maomao Wu presented a version of the standard Microsoft COM compo-
nent framework extended with interface meta-data and rules for composition,
using the CLIPS engine for inference and matching. A number of factors make
component composition harder in context-aware systems including the increased
intelligence and adaptability of the individual components, their increased au-
tonomy, and the time- and safety-criticality of some applications.

Otso Virtanen addressed the problem of terminal integrity, ensuring that
an adaptive end-point device retains the capabilities and assurances necessary
to remain integrated into a full network. Components are downloaded onto the
device using a secure protocol from a component broker, which manages the
dependencies of the various components sets.

In an extensible and dynamic environment, however, it is impossible to guar-
antee the correct functioning of every combination of components. Incompatible
combinations are recognised at the device, flagged and reported to the com-
ponent broker to prevent the propagation of clashes across the system. This
improves the integrity of users’ devices, since faulty compositions are less likely



to propagate once a problem has been detected. It also allows “roll-back” of
devices to component populations known to be stable.

Dhouha Ayed described an extension of the CORBA component model to
express assembly descriptions of components. An assembly descriptor includes
information allowing the choice of components to be constrained by location,
structure, type and so forth, and may be linked to a discovery service to facilitate
more adaptive component location. A rule-based selection system and adapter-
filter architecture allows components to be connected in the presence of minor
inconsistencies in their interfaces.

Many context-aware systems include a close correspondence between physical
objects and informational activities, means that the underlying context model
is more closely aligned to individual objects rather than to situations. Trung
Dung Ngo reported on embedding sensing and processing into Lego bricks.
Connecting bricks together provided automatic composition, to (for example)
use a sensor to directly control a motor. While limited in the complexity of
possible compositions, the system is easy enough for children to build with – and
indeed the children can work out how the bricks work together themselves, with
only a minimal explanation. Other applications include cognitive rehabilitation
and other sensory integration therapies.

Micael Sjölund described SensAid, a tablet PC platform for experimenting
with mixed physical and virtual entities. A room containing artefacts augmented
with RFID tags allows physical objects to have a corresponding virtual presence
carrying their meta-data and allowing interaction through the SensAid desktop
(or tablet-top) application.

3 Discussions

As seeds for discussion, the workshop addressed two issues arising from the
submissions:

1. How is adaptability best represented, presented and understood, both by
users and developers?

2. How can designers of middleware and platforms help support the continuity
of user experience in the face of adaptation while keeping the complexity of
applications development under control?

3.1 Adaptation

Adaptability means changing some aspect of a system’s detailed behaviour while
keeping the gross behaviour of the system consistent. From a contextual systems
perspective, adaptability means matching behaviour to changes in environment,
task, user population, preferences or some other factor; from a component sys-
tems perspective, it means selecting and/or configuring the component set to
provide the optimum behaviour. There are any number of design solutions that
can be applied to this process, with the design space being governed by the issues
(among others) discussed below.



Context as process versus context as data Many systems use a context
model based around context-as-data: the model stores a representation of the
state of the world as seen by the application and its sensors, which is then used
to inform the behaviour of applications. Adaptability comes from the way in
which components respond to changes in the context model, or from how they
are selected and interconnected based on it. This approach tends to lay stress
on responses to the changing environment.

An alternative view is to adopt a model of context-as-process, where the
context is the task the user is involved with – a task inferred from the sensor
(and other) data. This can be used to provide a stronger sense of continuity, in
that the task (and hence the users’ goals) are more clearly articulated, and can
therefore lay stress on the responding to the changing task priorities[2].

There does not seem to be a clear-cut case for either view as being more
powerful or natural. While using the context-as-process model potentially offers
a more holistic an continuous view around which to structure adaptation, such
models are often more error-prone trough having to infer the task from sensor
data. Conversely the context-as-data view can fragment adaptations by not re-
taining the “flow” of a task-level interaction. Integrating both views in the same
model may lead to conflicts between different levels.

Are the components context-aware? Another dimension in systems design
is where in the design the adaptability resides. The design space lies between
two extremes:

1. A static collection of components is constructed to handle the task, with
each component adapting itself to the changing context

2. Each component presents a fixed behaviour, and the collection of components
is changed according to the environment by some external agent

The systems described in the presentations fell into both categories, but with
an emphasis on the former.

An important notion in this area is that of open- versus closed-adaptive
systems, deriving from the work of Rick Taylor and others (e.g. [3]). A closed-
adaptive component provides a set of adaptive behaviours itself that can be
selected; an open-adaptive component accepts new behaviours from outside.
Closed-adaptive systems are less flexible over the long term but possibly more
reliable, stable and secure than open-adaptive components.

Open-adaptive components offer a better long-term solution for choreography
and re-purposing, but would accentuate the need to pay careful attention to
fallback and roll-back behaviours if an adaptation proved unsuitable.

Choosing the ”right” components In either of the above cases there is an
issue in choosing the correct components for a given situation – a decision that
may be repeated over the application’s lifetime.



Many of the participants work in this area. The main approaches involve
adding meta-data to component interfaces – something that should probably be
emphasised and standardised as part of the evolution of component frameworks.

The decision process itself is very subtle, since most systems will not have
access to all the information that they could potentially use. Several systems are
rule-based, although it was recognised that “crisp” logic may not be the ideal
way to deal with the inherent uncertainties.

An uncertain process must face the possibility that a decision is made in-
correctly. The impact of wrong decisions can vary, from preventing the system
working (with possible loss of data) to generating a system that works sub-
optimally. Systems that select component populations dynamically are able to
recover from non-fatal compositions by re-selecting as soon as the problem arises.
More static composition systems require more explicit recovery strategies.

Semantic compatibility Component selection depends on a degree of semantic
compatibility between the various components, either inherent or introduced
through adapters.

Again, one may take a static on dynamic position on the issue. The extreme
static position is to assume that interface meta-data is an infallible guide; the
extreme dynamic position is that consistency checks are continuously required to
ensure that the components are working together. What is important, however,
is to embrace the fact that compatibility is an issue in the on-going evolution of
systems and to address it in the basic structure of the design.

Complex components versus choreography Another aspect of component
selection involves the relative “weight” or “intelligence” of components. Compo-
nents may perform a single, simple function, or they may perform a larger set
of functions. A good example is two ways of building a messaging system: using
components that each support a single messaging protocol (e-mail, SMS, IM), or
as a single messaging component offering all protocols. Both are valid decision
decisions, and both are orthogonal to the issue of whether the components offer
adaptive interfaces to their services.

Using large populations of small components involves quite complex co-
ordination (sometimes referred to as “choreography”), but allows very fine-
grained adaptation. Larger components allow simpler plumbing but force the
system developer to take larger “chunks” of functionality.

This argument is common in all component- or object-based systems. It has
a particular impact for contextual systems in which the component composition
decisions are uncertain and may be hard to undo.

One part of the design space that is definitely concerning is large components
offering adaptive interfaces internally. There is a real risk that the component
will be selected for functional reasons (i.e. it offers messaging functions), but will
not offer the best adaptive interface functions. Separating these two concerns is
therefore an important goal for populating a component framework.



Autonomous versus human-in-the-loop One of the goals of pervasive com-
puting is to be able to offer some services autonomously, matched to context.
This includes adapting the user interface. The question is whether, and to what
extent, services can or should be provided without user intervention, and how
to integrate the human into the loop in a natural fashion.

This question divides into two parts. At an interface level it may be possible
(and indeed preferable) to provide for user “guidance” of adaptations where
possible. At the system level, imprecise reasoning may require disambiguation
by the user. In effect this is a “whole system” issue rather than being tied to
components per se.

Observability of relevant state in the interface Closely related to the
above is the inclusion of relevant state in the interface. It is evident that human
decision-making relies on presenting the information needed for the decision;
it also seems to be the case that autonomous or semi-autonomous adaptations
should be indicated in the interface, either before (“this change may happen”)
or after (“this is what just happened”).

3.2 Continuity and complexity

If the “software crisis” challenges our ability to build correct software for desktop
and server-based systems, then context-aware systems raise the bar even higher.
Engineering such systems means that we need to identify the areas of context-
awareness that generate additional complexity, and develop ways to keep it under
control.

Complexity has a user dimension as well as a programmer one. A system that
adapts too often may appear to “flicker” and prevent users forming a coherent
mental model of its behaviour and services. This is why it is important to mirror
the users’ notions of the continuity of an interaction across modifications in
detailed behaviour.

A number of major issues affecting complexity are discussed below.

Retain task models at run-time Maintaining continuity of interaction across
adaptation relies either on knowing that adaptations inherently preserve conti-
nuity or on being able to intervene to preserve the experience. The former is
difficult to conceive of in an open system; the latter is considerably simplified
by keeping task models available at run-time.

“Introspective” systems architectures are moderately common, occurring on
a small scale in reflective programming languages and on a large scale in fa-
cilities management systems such as Tivoli. It is far less common to encounter
run-time descriptions of the use cases or tasks the system addresses. However,
having an abstract, machine-readable description of the task being supported by
a system makes it far easier to ensure that adaptations “maintain the place” in
the workflow.



Separate functions from interface Interface adaptations form a large part
of the adaptations a system makes to changes in context – although by no means
all the possible adaptations involve interface changes.

The separation of function from interface is a common one in many systems,
being the basis for the Model-View-Controller (MVC) design pattern. Maintain-
ing this separation into adaptive and multi-modal interfaces – although chal-
lenging – is essential to allow tested functionality to be re-used under different
usage models.

This design constraint lends itself well to open-adaptive and choreography-
based component strategies, since one may select base behaviour and then pro-
vide multiple changing interfaces without modifying it.

Make ”seams” observable A lot of pervasive computing is characterised
as “seamless” interaction, characterised as meeting Mark Weiser’s vision of pre-
sented the right service at the right time in the right way with minimal cognitive
load[4].

However, there are many ways in which the world is inherently “seamed”,
and these seams should be reflected in the behaviour of a context-aware system.
The key observation is that discontinuous behavioural change should occur in
response to clear changes in the environment. A system may change interface
mode better to match the task or environment: but if this change introduces a
cognitive disruption then there should be a clear rationale for the change that
the user can relate to. There are strong arguments for elevating this notion to
being a fundamental design driver for tools and languages (see for example [5]).

Externalise strategies Any function that is embodied solely as code is es-
sentially a black box that can only be manipulated according to its meta-data.
While essential for core low-level tasks, higher-level co-ordination tasks can of-
ten be externalised as process descriptions. A number of emerging standards
exist in this domain, often targeted at web services. While perhaps not com-
pletely applicable to pervasive computing as they stand, they offer a promising
direction.

As well as task descriptions of this kind, adaptation also requires adapta-
tion strategies that are followed to determine component configurations or re-
configurations. Again, if these strategies are articulated as descriptions rather
than code, they can be analysed and manipulated by other strategies to solve
conflicts or introduce additional concerns. A good example might be delaying
an adaptation that will radically change the system’s interaction mode until the
user reaches a natural “break” in the task.

4 Conclusions and recommendations

If one had to distill three recommendations for systems design from the presen-
tations and discussions, they would be the following:



Keep components simple Simple components allow greater flexibility in com-
position. The separation of user interface from function – a “contextualised
MVC” – provides better adaptability than larger-grained components with
hard-wired adaptation.

Externalise adaptations A systems’ reaction to contextual changes is itself
a subject for analysis. The strategies and decision processes used should be
represented explicitly and in machine-readable form to allow second-order
effects to be generated.

Retain a global view Contextual systems have an unavoidable holism, which
implies taking a global view on the system and its behaviour as well as a
local view per-component. This includes a view of the tasks the system is
supporting and the way it is supporting them. The global view should be
clearly expressed rather than being implied.

In conclusion, a wide range of techniques from object- and component-oriented
software engineering are contributing strongly to the development of context-
aware systems. Several extensions are needed, especially in handling dynamic
component composition in the face of imperfect information, and in maintaining
a continuous user experience with adaptive interfaces. Some of these extensions
can be provided conservatively by adding meta-data and processing to com-
ponent interfaces within largely standard frameworks; others require a hange
in the way we think about, design and analyse component systems and their
relationship to their operating environment.

References

1. Enmerich, W.: Engineering distributed objects. Wiley (2000)
2. Dobson, S.: Applications considered harmful for ambient systems. In: Proceedings

of the International Symposium on Information and Communications Technologies,
ACM Press (2003) 171–176

3. Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilliei, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems 14 (1999) 54–62

4. Weiser, M.: The computer for the 21st century. Scientific American (1991)
5. Dobson, S., Nixon, P.: More principled design of pervasive computing systems. In:

Proceedings of Engineering for Human-Computer Interaction and Design, Specifi-
cation and Verification of Interactive Systems (EHCI-DSVIS’04). LNCS, Springer-
Verlag (2004) To appear.



A Participants

Name Affiliation

Dhouha Ayed CNRS INT-Evry, FR
dhouha.ayed@int-evry.fr

Joëlle Coutaz CLIPS-IMAG, FR
joelle.coutaz@imag.fr

Simon Dobson Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Jasminka Matevska-Meyer University of Oldenburg, DE
matevska-meyer@informatik.uni-oldenburg.de

Trung Dung Ngo University of Southern Denmark, DK
dungnt@mip.sdu.dk

Gaëtan Rey CLIPS-IMAG, FR
gaetan.rey@imag.fr

Peter Rigole KU Leuven, BE
peter.rigole@cs.kuleuven.ac.be

Aline Senart Trinity College Dublin, IE
aline.senart@cs.tcd.ie

Micael Sjölund Linköping University, SE
x03micsj@ida.liu.se

Otso Virtanen Helsinki Institute for Information Technology, FI
otso.virtanen@cs.helsinki.fi

Maomao Wu University of Lancaster, UK
maomao@comp.lancs.ac.uk

Copies of all the submitted papers and presentations may be found on the work-
shop web site, http://www.cs.tcd.ie/COA-CAC-04/.

B Programme committee

Simon Dobson Trinity College Dublin, IE
Paddy Nixon University of Strathclyde, UK
Siobhán Clarke Trinity College Dublin, IE
Achilles Kameas University of Patras, GR
Dominic Duggan Stevens Institute of Technology, US
Gaetano Borriello University of Washington, US


