
University of Dublin
Trinity College

Dublin 2, Ireland

Simon Dobson and Paddy Nixon

Department of Computer Science

Trinity College, Dublin IE

Department of Computing and

Information Sciences, University of

Strathclyde, Glasgow UK

simon.dobson@cs.tcd.ie

paddy.nixon@cis.strath.ac.uk

More principled design of
pervasive computing systems

More principled design ofpervasive computing systems – p.1/23

Introduction

Pervasive computing involves building systems that will
respond to a range of novel cues
Our current work is targeted at improving the analysis and
design of pervasive computing applications

1. Formal models of context and behaviour

2. Map between them to structure adaptation

3. Develop insight for new programming structures

This talk introduces the early work on the first two, and
points towards the future of the last

More principled design ofpervasive computing systems – p.2/23

Talk overview

1. Challenges from pervasive computing

2. Back to first principles

3. The start of a mathematical model of behavioural
variation

4. Where we are and where we’re going

More principled design ofpervasive computing systems – p.3/23

Pervasiveness and context

Deliver the correct service to the correct user at the correct
place and time, and in the correct format for the
environment [Weiser, 1991]
Must reason about behaviours beyond construction
Context is the complete environment of a behaviour,
understood symbolically

Primary context from sensors, used to infer secondary
context

No widely-accepted operational or representational
theory

No general ways to integrate context cleanly into
applications

More principled design ofpervasive computing systems – p.4/23

Current application approaches

Two basic models

Event-handling systems – behaviour specified as
responses to events

— Fragmented logic, semantically opaque, difficult to
combine

Model-based systems – rules applied to a shared
context model

— More difficult to scale, difficult to combine

Neither explicitly captures the structure of the environment
and the dependence that variation has on it

More principled design ofpervasive computing systems – p.5/23

Why composition is hard

More principled design ofpervasive computing systems – p.6/23

Why composition is hard

More principled design ofpervasive computing systems – p.6/23

Why composition is hard

More principled design ofpervasive computing systems – p.6/23

Why composition is hard

More principled design ofpervasive computing systems – p.6/23

Why composition is hard

More principled design ofpervasive computing systems – p.6/23

Why composition is hard

Dude! -- where’s
my printout???

More principled design ofpervasive computing systems – p.6/23

Semantic essentials

Behaviours that are correct as points may give rise to a
behaviour that is incorrect as a process

Sequential composition of two correct behaviours is
not necessarily correct

Optimal solution depends on entire context and may
change as more detail emerges

The key point is stability: if we perturb a system’s context,
how do its adaptations change?

Keep the system stable enough to be grasped but
dynamic enough to be meaningfully adaptive

More principled design ofpervasive computing systems – p.7/23

Hypothesis

Predictability in adaptive systems comes when there is a
clear, structured relationship between the contextual and

behavioural spaces

Put another way:

A user should be able to anticipate changes in
behaviour by looking at approaching changes in the
environment; or

Having observed a change, there should be an
explanation in terms of the context that caused it; and

The behaviour should be continuous with respect to
the users’ perceptions of the task

More principled design ofpervasive computing systems – p.8/23

Environment and change – 1

Pervasive systems are inherently
compositional

Can’t pre-specify all the
relevant context

Can’t avoid multiple systems
in a space

. . . and don’t want to anyway

There is a natural symmetry between the structure of the
environment and the structure of application behaviours
over that environment

More principled design ofpervasive computing systems – p.9/23

Environment and change – 1

Pervasive systems are inherently
compositional

Can’t pre-specify all the
relevant context

Can’t avoid multiple systems
in a space

. . . and don’t want to anyway

There is a natural symmetry between the structure of the
environment and the structure of application behaviours
over that environment

More principled design ofpervasive computing systems – p.9/23

Environment and change – 1

Pervasive systems are inherently
compositional

Can’t pre-specify all the
relevant context

Can’t avoid multiple systems
in a space

. . . and don’t want to anyway

There is a natural symmetry between the structure of the
environment and the structure of application behaviours
over that environment

More principled design ofpervasive computing systems – p.9/23

Environment and change – 1

Pervasive systems are inherently
compositional

Can’t pre-specify all the
relevant context

Can’t avoid multiple systems
in a space

. . . and don’t want to anyway

There is a natural symmetry between the structure of the
environment and the structure of application behaviours
over that environment

More principled design ofpervasive computing systems – p.9/23

Environment and change – 1

Pervasive systems are inherently
compositional

Can’t pre-specify all the
relevant context

Can’t avoid multiple systems
in a space

. . . and don’t want to anyway
There is a natural symmetry between the structure of the
environment and the structure of application behaviours
over that environment

More principled design ofpervasive computing systems – p.9/23

Environment and change – 2

If we take a wide enough view of the situation, every
behavioural change maps to some perceptible change in
the environment

Physical factors

Also non-physical – two sides of a room handled
differently

Put another way, there are “seams” in the context

Not seamless – crossing a boundary is significant

. . . but things stay the same within a boundary

Less interested in what a system does than in how what it does
changes with context – semantics with a broad brush . . .

More principled design ofpervasive computing systems – p.10/23

Environment and change – 2

If we take a wide enough view of the situation, every
behavioural change maps to some perceptible change in
the environment

Physical factors

Also non-physical – two sides of a room handled
differently

Put another way, there are “seams” in the context

Not seamless – crossing a boundary is significant

. . . but things stay the same within a boundary

Less interested in what a system does than in how what it does
changes with context – semantics with a broad brush . . .

More principled design ofpervasive computing systems – p.10/23

Composite meaning

An application’s place in the
spectrum of adaptations
emerges naturally from the
“shape” of its context

Single static
behaviour

Chaotic
behaviour

Increasing adaptability

Increasing predictability

No adaptation
to changing
context

Random
behaviour

Understandable levels
of adaptation

We can find four fragments of the overall meaning:

1. The “baseline” behaviour

2. The context space, with structure

3. The behavioural space, also with structures

4. A mapping from changes in context to corresponding
changes in behaviour

More principled design ofpervasive computing systems – p.11/23

Towards more principled design

The challenge is to describe how the baseline behaviour
varies, in a way that composes properly as context is
elaborated

X-location

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

Articulate the complete environment and the application’s
responses to it

More principled design ofpervasive computing systems – p.12/23

Towards more principled design

The challenge is to describe how the baseline behaviour
varies, in a way that composes properly as context is
elaborated

X-location

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

Articulate the complete environment and the application’s
responses to it

More principled design ofpervasive computing systems – p.12/23

Towards more principled design

The challenge is to describe how the baseline behaviour
varies, in a way that composes properly as context is
elaborated

X-location

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

Articulate the complete environment and the application’s
responses to it

More principled design ofpervasive computing systems – p.12/23

Towards more principled design

The challenge is to describe how the baseline behaviour
varies, in a way that composes properly as context is
elaborated

X-location

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

X-location

Role

Y-location

Behaviour

Articulate the complete environment and the application’s
responses to it

More principled design ofpervasive computing systems – p.12/23

Category theory on one slide

 a

 b

b . a

Object - an abstract value, like a member of a set

Arrow - mapping between objects, with composition and identity

More principled design ofpervasive computing systems – p.13/23

Category theory on one slide

 a

 b

b . a

Object - an abstract value, like a member of a set

Arrow - mapping between objects, with composition and identity

More principled design ofpervasive computing systems – p.13/23

Category theory on one slide

 a

 b

b . a

Object - an abstract value, like a member of a set

Arrow - mapping between objects, with composition and identity

Category - collection of objects and arrows

More principled design ofpervasive computing systems – p.13/23

Category theory on one slide

 a

 b

b . a

Object - an abstract value, like a member of a set

Arrow - mapping between objects, with composition and identity

Category - collection of objects and arrows

Functor - mapping between categories preserving identities composition of arrows

 Fb
 = F(b . a)
 = F(b) . F(a)

Fa

F

More principled design ofpervasive computing systems – p.13/23

Context as category – 1

By representing context as a category we capture the
structure inherent in it in the patterns of arrows

 lt

 a

 c

 b

 d

 lt

N

Often simple, e.g. containment of named spaces

More principled design ofpervasive computing systems – p.14/23

Context as category – 2

Secondary context can be represented as a functor from
primary, e.g. from GPS locations to named spaces

 lt

 a

 c

 b

 d

 lt

NL

map

Using categories gives us the necessary consistency

For example the secondary context has to respect any
structure in the primary context – for better or worse

More principled design ofpervasive computing systems – p.15/23

Context as behaviour

As well as representing context as a category, we can
represent the details of behaviour as categories too

An object parameterising the base behaviour

In fact, behaviour variation is context – a secondary
derived by a (probably complex) functor

For example, a wireless document system

Baseline behaviour is the document service

Adaptation is the set of documents served

More principled design ofpervasive computing systems – p.16/23

Fibres

The fibre structure captures the global variation of the
system

The contexts in which it behaves the same

The points at which it changes

More principled design ofpervasive computing systems – p.17/23

Fibres

The fibre structure captures the global variation of the
system

The contexts in which it behaves the same

The points at which it changes

More principled design ofpervasive computing systems – p.17/23

Fibres

The fibre structure captures the global variation of the
system

The contexts in which it behaves the same

The points at which it changes

More principled design ofpervasive computing systems – p.17/23

Change in the right place

Even so simple a model can answer some interesting
questions

Which different contexts select the same behaviour?

Conversely, at what points will behaviour change?

Align the fibre transitions with the contextual changes that
are appropriate for the application

Formalise “different context”

We can use the same techniques
“forwards” for design and “backwards”
for analysis

More principled design ofpervasive computing systems – p.18/23

Composition – 1

Returning to the wireless document server, we might have
two different variations

By user – what documents can I see?

By location – what can I see here?

Need to separate these concerns where possible, and
compose them to get the desired behaviour

More principled design ofpervasive computing systems – p.19/23

Composition – 2

We can formalise three behaviours categorically:

1. No change in behaviour (context-independent)

2. Make sure a user always sees a “core” of documents
– perhaps more in some locations

3. Make sure a user never sees more documents than
the “extent” of the document base – less in some
places

Help form mental models, e.g. some documents are
always available

Direct consequence of categorical treatment

More principled design ofpervasive computing systems – p.20/23

Composition – 2

We can formalise three behaviours categorically:

1. No change in behaviour (context-independent)

2. Make sure a user always sees a “core” of documents
– perhaps more in some locations

3. Make sure a user never sees more documents than
the “extent” of the document base – less in some
places

Help form mental models, e.g. some documents are
always available

Direct consequence of categorical treatment

More principled design ofpervasive computing systems – p.20/23

Composition – 2

We can formalise three behaviours categorically:

1. No change in behaviour (context-independent)

2. Make sure a user always sees a “core” of documents
– perhaps more in some locations

3. Make sure a user never sees more documents than
the “extent” of the document base – less in some
places

Help form mental models, e.g. some documents are
always available

Direct consequence of categorical treatment

More principled design ofpervasive computing systems – p.20/23

Conflict analysis

Service discovery implies dynamic conflicts between
behaviours
In some simple cases we can identify “safe zones”

The context in which the two systems behave the
same

If we ensure they stay in this zone, there will be no
perceptible conflict

Either force safety (design) or detect conflict (analysis)

This uses two categorical notions of
sub-object and equaliser

More principled design ofpervasive computing systems – p.21/23

Status and plans

Motivated by the need to engineer pervasive systems, not
just build them
The start of a semantics for adaptation and variation in
pervasive computing systems (and beyond)

Design – get the changes right

Analysis – why a change was wrong

Looking at improving analysis and embedding the notions
directly into programming constructs

Many of these ideas give rise to interesting new
type theories and language constructs

More principled design ofpervasive computing systems – p.22/23

Four things to take away

1. Articulate both context and behaviour – these are the
semantic essentials

2. A more “topological” model provides stronger formal
notions of continuity of behaviour

3. Support closed-form analyses, not pointwise
adaptations that may not compose

4. It may be possible to mirror many interface concerns
at a direct semantic level

More principled design ofpervasive computing systems – p.23/23

		cdheading
	Introduction
	Talk overview
	Pervasiveness and context
	Current application approaches
	Why composition is hard
	Semantic essentials
	Hypothesis
	Environment and change -- 1
	Environment and change -- 2
	Composite meaning
	Towards more principled design
	Category theory on one slide
	Context as category -- 1
	Context as category -- 2
	Context as behaviour
	Fibres
	Change in the right place
	Composition -- 1
	Composition -- 2
	Conflict analysis
	Status and plans
	Four things to take away

