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Abstract—Wireless sensor networks usually operate in dy-

namic, stochastic environments. While the behaviour of indi-

vidual nodes is important, they are better seen as contributors

to a larger mission, and managing the sensing quality and

performance of these missions requires a range of online decisions

to adapt to changing conditions. In this paper we propose an self-

adaptive, self-managing and self-optimising sensing framework

grounded in Bayesian dynamic linear models. Experimental

results show that this solution can make sound scheduling

decisions while also minimising energy usage.
Index Terms—self-management, adaptive sampling, sensor net-

works, machine learning, energy efficiency

I. INTRODUCTION

Wireless sensor networks (WSNs) offer several motivating

challenges for self-organising systems. A typical objective of

a sensor deployment is to sample an environment at a desired

pace and send the observations back to a “sink” location. The

whole process needs to take energy efficiency into account.

Centralised control has been the dominating approach in the

literature where either management decisions are made at the

sink or some top-down co-ordination is used. Although these

solutions have only lightweight local computation, they suffer

from scalability problems and potentially a single point failure.

More importantly, the power used in node-server communica-

tion might outweigh the power saved through minimising local

computation.

A bottom-up, self-organising solution is therefore desirable.

Ideally one would like local decisions to be made indepen-

dently, with little (or no) communication overhead. A globally

optimal result might not be achieved this way: but “good”

results should be expected if sound local decisions are made.

As a data-driven application, sensor nodes need to under-

stand a certain extent of the physics which they are tasked to

measure in order to achieve well-founded local control. This is

not always straightforward. Firstly, the physics is usually very

hard to model. Specific models do exist for some applications,

such as flooding or meteorology. However, these models are

usually too complicated to be included at sensor level, and

also too specific to be reusable in other more general settings.

Secondly, the physics is fundamentally uncertain and is further

confused by measurement error, outside perturbations that go

unobserved, the (often unavoidable) degradation of sensor ca-

pabilities over time, and the impact of management decisions

such as energy-saving on sensor fidelity.

Understanding and addressing these issues requires that we

adopt a management approach that is grounded both in the

engineering of sensor networks and in the behaviour being

observed. One approach is to use machine learning to track

observations and make control decisions in response. While

machine learning is often too heavyweight to be deployed

on compute-constrained nodes, there are approaches that are

appropriate for such settings.

In this paper, we explore Bayesian Dynamic Linear Models

(DLM) as an approach to local decision-making that can

take place at an affordable cost. DLMs tailored to general

sensor platforms together with the efficient model inference

procedures are derived. The benefits of employing DLMs

are their formal basis in Bayesian inference; their general-

ity; their robustness to missing and perturbed observations;

and their distribution efficiency that allows for purely local

implementation. To put the model into use, we investigate

the practical-sampling scheduling problem where each sensor

node decides autonomously when to sample and how the data

can be recovered. We show how DLM inference allows sensor

nodes to decide the sampling time locally, and that a globally

“good” result can be achieved out of this bottom-up, self-

organising design: all the results are achieved without any

form of centralised liaison. The paper concludes with further

applications and benefits of using DLMs, and some notes for

the future.

II. RELATED WORK

Model based solutions are popular for WSNs control. The

solutions employ formal or ad hoc models maintained at

either the server side or in the network. Centralised modelling

solutions, like [1], control the sensors by a server-side model.

However, this category of solution suffers from scalability



problem and single point failure. Another paradigm also

called replicated models solution features keeping synchro-

nised models both at the sink and network. PAQ [2], [3], for

example, employs an autoregressive (AR) model for sensor

data modelling. However, ARIMA model usually requires

computational intensive learning phase; moreover, the learning

cannot be done on-line. Low-Energy Adaptive Clustering Hier-

archy (LEACH) [4] and Adaptive Sampling Approach to Data

Collection (ASAP) [5] fall into the category of cluster-based

in-network aggregation method. The cluster based solutions

usually require some form of intra-cluster co-ordination, and

the overhead on cluster head node could be significant.

Regarding sampling control, some similar solutions have

been put forward. An decentralised adaptive sampling control

method is proposed in [6] where Fisher Information and Gaus-

sian process (GP) regression are used. The solution targets

at a specific application with specialised hardware platform

that can handle intensive learning task of GP. Other similar

solutions include [7], where the authors present a utility-based

adaptive sampling solution. A piecewise linear function is used

to model the sensor data. But the model learning requires

storing of the learning data locally, and the model update is

not straightforward. A prediction-based geometric data stream

monitoring solution is proposed in [8]. The solution aims at

reducing sink-node communication. However, the solution tar-

gets at triggering event detection where a non-linear function

of the distributed data source is of interest.

III. BAYESIAN DYNAMIC MODELLING

Bayesian Dynamical Linear Models (DLMs) have been

successfully applied in analysing financial time series [9], [10],

and some others like medicine, ecology data [11], [12]. How-

ever, the close linkage between DLMs and sensor platforms

has not been well discovered. In this section, the backbone of

the proposed solution: DLMs is introduced with a focus on its

connection with sensors.

A. Model Definition

Sensor data can be viewed as a collection of (multivariate)

time series; let yi
t, a p-variate vector, denote the sensor data

measured at time t by node i; then Y i = {yi
t, t ≥ 1}

represents the time series collected by node i. A dynamic

linear model is a probabilistic time series model which can be

formulated as follows (node id i is dropped for convenience):

Definition 1 (Bayesian Dynamic Linear Model).

Sensor model: yt = F tθt + vt, vt ∼ Np(0,Σt) (1a)

Process model: θt = Gtθt−1 +wt,wt ∼ Nm(0,Ωt), (1b)

together with a prior for θ0

θ0 ∼ Nm(m0,C0); (1c)

where Gt (of order m × m) and F t (p × m) are scalar

matrices, Np(µ,Σ) denotes a p-variate Gaussian distribution

with mean and covariance matrix µ and Σ respectively, and

vt,wt are independent to each other for all t.

The dimensions of the relevant parameters are summarised

in Table I.

TABLE I
PARAMETERS OF A DLM MODEL

Parameters Dimensions

yt,f t, et p× 1

mt,at m× 1

Ct,Rt,W ,Gt m×m

Qt,V p× p

F t p×m

A DLM can be completely specified by a quadruple:

{F t,Gt,Σt,Ωt},

plus the initial prior parameters {m0,C0} for θ0, where

F t and Gt are usually fixed matrices that depend on the

model of choice; however the two covariance matrices Σt and

(especially) Ωt, the unobserved state evolution variance, are

unknown.

B. DLM for sensors (univariate)

A DLM model suits the sensor context particularly well.

Equation (1b), which is a first-order Markovian stochastic

process, can be actually viewed as the model for the hidden

physical phenomenon of interest (for example temperature).

The model assumes the physical process is stochastically

evolving over the time and its current state depends on its

previous state subject to some linear transformation Gt and

some stochastic small changes wt. Intuitively, this process

assumption is appropriate for most physical variables: for

instance, the current temperature develops upon its previous

state plus some small change either positive or negative.

Equation (1a) represents the sensor or observation model,

where sensor measurements yt are formed by “observing”

the hidden process θt, again plus some unbiased observation

errors. Figure 1 shows the DLM definition graphically: the

round nodes represent the hidden physical process whose value

depends on its previous state; while the square nodes are the

sensor observations of the corresponding hidden process.

θ0 θ1 θ2 θ3 θ4

y1 y2 y3 y4

Fig. 1. Graphical representation of a DLM



1) process model assumption for sensors: The legitimacy

of the process model can be further established as follows.

Assume the physical process can be formed as a real-valued

continuous function of time, say, φ(t). Note the assumption

applies to most sensor settings. The process then can be

modelled by setting θt as an m-component random vector

(with the corresponding F t = (1, 0, . . . , 0)′ and Gt as a

m ×m upper triangular matrix of unit elements), leading to

the m-order polynomial trend DLM. For example, a second-

order polynomial DLM (also called local linear trend model,

hereafter referred to as simply trend model) is formed with a

hidden state θt = (µt,βt)′, and

yt = µt + vt, vt ∼ N (0,σ2
v), (2a)

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N (0,σ2
w,1), (2b)

βt = βt−1 + wt,2, wt,2 ∼ N (0,σ2
w,2), (2c)

which is equivalent to a DLM with the following settings:

F t := E = [1 0], Gt := L =

[

1 1
0 1

]

,

and wt = (wt,1, wt,2)′,Ωt = diag(σ2
w,1,σ

2
w,2). The model can

be simplified by setting Ωt = σ2
v · diag(Wt,1,Wt,2), where

Wt,i = σ2
w,i/σ

2
v is the corresponding variance ratio. Define

W t = diag(Wt,1,Wt,2), the corresponding model quadruple

is

M2 : [E,L,σ2
v ,W t]. (2d)

Other DLMs with different orders can be formed similarly,

although in real world data analysis only the first two orders

are relevant. To see the connection between the model and the

physical process φ(t), apply the Taylor expansion to φ(t) at

time ti: the function at k-unit time step forward can then be

written as

φ(ti + k) ≈ φ(ti) + φ′(ti)k + . . . =
∞
∑

n=0

φ̃(n)
i kn,

where φ̃(n)
i = φ(n)(ti)/i!1. The m-order polynomial DLM

actually corresponds to the m-order Taylor expansion of the

physical process function with φ̃(n)
i matches the (n + 1)th

element of θt, where the unknown polynomial coefficients

φ̃(n)
i are stochastic and subject to random noise rather than

being fixed. For most sensor data, linear approximations

(i.e. 1st- or 2nd-order DLMs) are sufficient to capture the

future evolvement of the process; higher order models with

complicated polynomial growth are usually not appropriate

unless that specific growth is known a priori.

1This argument holds as long as f is continuous and differentiable

C. Multivariate DLM extension

For most WSN applications the deployed nodes have more

than one type of sensor, and the intra-node variates are usually

correlated. Figure 2, for example, shows temperature and

humidity observations that are negatively correlated. To model

multivariate sensor data, an easy extension could have been

treating yi,t for i ∈ {1, . . . , p} as independent components.

However, this extension ignores the inter-variate correlations

and also excludes the important “borrowing strength” of the

multivariate model.

A more realistic model can be built based upon the univari-

ate DLMs. Assume each univariate sensor data yi,t admits a

polynomial DLM model (i.e. local level or trend model):

yi,t = F tθi,t + vi,t, vi,t ∼ N (0,σ2
ii); (3)

θi,t = Gtθi,t−1 +wi,t, wi,t ∼ Nm(0,W tσ
2
ii). (4)

The multivariate model can be constructed as follows:

yt = (F t ⊗ Ip)θt + vt, vt ∼ Np(0,Σ); (5a)

θt = (Gt ⊗ Ip)θt−1 +wt. wt ∼ Nmp(0,W t ⊗Σ), (5b)

where yt = (y1,t, . . . , yp,t)′, vt = (v1,t, . . . , vp,t)′, In

is a n-order identity matrix, ⊗ is the Kronecker product,

Σ = (σ2
ij)p×p is the (symmetric, positive-definite) covariance

matrix of vt; and θt = vec(Θ′
t), wt = vec(Ω′

t), where

Θt = (θ1,t, . . . ,θp,t), Ωt = (w1,t, . . . ,wp,t),

and vec is the standard vec-operator which stacks the columns

of a m× p matrix into a mp column vector. This multivariate

DLM model still conforms to the general DLM definition, with

a modified quadruple

[F t ⊗ Ip,Gt ⊗ Ip,Σ,W t ⊗Σ]. (5c)

Among the four elements, only Σ, and W t are unknown

(whose learning algorithm is discussed in the next section).

The inter-variate correlation is introduced by the measurement

covariance Σ: e.g. off-diagonal covariances with larger mag-

nitude indicate a stronger linkage between the two variates.

To summarize, with the help of the above formalisms,

various sensor data, univariate or multivariate, can be modelled

by first selecting the appropriate univariate DLM quadruple

and then transforming it to a multivariate model by (5).

IV. BAYESIAN CONJUGATE INFERENCE OF DLM

For sensor applications, the inference problem revolves

around the data. The distribution of future observations is

of special interest to a sensor node, specifically the h-step

lookahead predictive distribution p(yt+h|y1:t) for any h ≥ 1.

This predictive distribution provides information about ex-

pected future observations based on the data collected so far.
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Fig. 2. The intra-node attributes correlation: humidity versus temperature

Relying on the distributions, informed decisions about future

data collection can be made.

For a DLM with a known quadruple, the seminal Kalman

filter [13] can be used to estimate the predictive distribution.

However, in real sensor applications, the covariance matrices

of the quadruple are unknown until the data is actually

observed. Traditional maximum-likelihood estimation might

be used [14]: however, such estimation requires an iterative

optimisation procedure.

Instead, we use conjugate Bayesian learning that treats

unknown quantities as random variables to achieve an afford-

able inference engine. To simplify the illustration, only the

multivariate DLM result is presented; however, the univariate

case can be easily recovered as a special case. To achieve

this computational efficiency, the conjugate prior for {Σ,θ0}
(the unknown quantities of a DLM2) is assumed. An Inverse-

Wishart (IW) distribution is the natural conjugate prior dis-

tribution for (matrix valued) variance. There exist different

IW distribution functions in the literature [15], [16], [17],

[9], [18]: in this paper, we adopt the definition used in [17]:

Σ ∼ IW(ν,S) with density

p(Σ) ∝ C × |Σ|−(ν+p+1)/2exp

{

−
1

2
tr(SΣ−1)

}

,

where C =
(

2νp/2πp(p−1)/4
∏p

i=1 Γ
(

ν+1−i
2

))−1
· |S|−ν/2 is

a constant that is independent of Σ3.

Theorem 1 (Bayesian conjugate learning). Adopt the follow-

ing prior distribution for θ0,Σ|∅:

p(θ0,Σ) = p(θ0|Σ)p(Σ) = N (m0,C0 ⊗Σ)IW(n0,S0)
(6)

! NIW⊗(m0,C0, n0,S0) (7)

2Efficient specification of W t is detailed in the following section
3Quintana [19] and West [12] use a different form of IW which lead to

different estimation update rules for ν and S. The benefit of our definition
is that the estimation algorithm for S is completely recursive and can be
calculated without re-scaling.

for some pre-determined parameters m0,C0, n0,S0 in the

multivariate sensor DLM model specified in (5).

for t > 0:

1) Evolution step t:

θt|Σ,y1:t−1 ∼ Nmp(at,Rt ⊗Σ)

where

at = (Gt ⊗ Ip)mt−1, Rt = GtCt−1G
′
t +Wt (8a)

2) Conditional predictive:

yt|Σ,y1:t−1 ∼ Np(f t, QtΣ),

with unconditional predictive

yt|y1:t−1 ∼ Tp(f t,
QtSt−1

nt−1 − p+ 1
, nt−1 − p+ 1)

where

f t = (F t ⊗ Ip)at, Qt = F tRtF
′
t + 1 (8b)

3) Updated Posterior at t:

θt,Σ|y1:t ∼ NIW⊗(mt,Ct, nt,St),

with marginal

Σ|y1:t ∼ IW(nt,St)

where

mt = at + (Kt ⊗ Ip)e
′
t, Ct = Rt −KtK

′
tQt,

nt = nt−1 + 1, et = yt − f t

Kt = RtF
′
t/Qt, St = St−1 + ete

′
t/Qt

(8c)

Figure 3 shows the Bayesian learning procedures graphi-

cally. Without concrete prior knowledge, the prior is usually

set diffusive or non-informative. Note the posterior distribution

is adapted or learnt when more data is admitted; and the

diffusive prior is shrinking as more data is learnt. In this

work, non-informative priors are always used. According to

Theorem 1, the predictive distribution is a p-variate Student T

distributed. A Student T is similar to a Gaussian distribution

but with heavier tail. The following useful results are listed.

First, any subset of a multivariate T-random vector is still

Student T distributed with model parameters immediately

available from the joint distribution. This result allows one to

infer on each individual sensor observation without any further

computational effort.

Result 1 (Marginal T Distribution). Let x =

[

x1

x2

]

be dis-

tributed as Tp(µ,Σ, ν) with µ =

[

µ1

µ2

]

, Σ =

[

Σ11 Σ12

Σ21 Σ22

]

,



and |Σ22| > 0, where µ1 and µ2 are p1, p2 dimensional ran-

dom vectors and p1 + p2 = p. Then the marginal distribution,

xi, i = 1, 2, is also T distributed; Specifically,

xi ∼ Tpi
(xi;µi,Σi, ν).

Second, the conditional distribution, on the other hand,

provides a more informed distribution that takes inter-variate

correlations into account. For example, when partial observa-

tion x2 is available, the conditional distribution on x1 can be

obtained by:

Result 2 (Conditional T Distribution). The conditional distri-

bution, x1|x2, is p1-variate T distributed:

x1|x2 ∼ Tp1
(x1;µ1|2,Σ1|2, ν1|2),

where

ν1|2 = ν + p2 (9a)

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) (9b)

Σ1|2 =
ν + (x2 − µ2)

TΣ−1
22 (x2 − µ2)

ν + p2

(

Σ11 −Σ12Σ
−1
22 Σ21

)

.

(9c)

Note the conditional distribution is essentially an update

upon the marginal densities where the “update” is provided

by the partial observation.

A. Specification of Wt by Discount Factor

Theorem 1 only works when W t is pre-specified. In reality,

the matrix that represents the variance ratios also needs to

be learnt from data. Unfortunately, this complicated model

(with essentially two unknown variance matrices {Σ,W t})

has no closed form solution [14]. To resolve the problem, we

adopt the common practice of specifying W t dynamically as

a discount factor of P t = GtCt−1G
′
t,

W t =
1− δ

δ
P t, (10)

where δ ∈ (0, 1] is the discount factor selected by the modeller

[12], [9], [20]. δ actually represents the percentage of the

precision lost as t increments. For routine analysis, δ is usually

selected between the range [0.9, 0.99] [12]; in this work, a

δ = 0.9 is used. We adopt the method not only because it

achieves good forecasting results but also there is no need

to store W t specifically, as it is implicitly defined by P t,

an existing parameter used in Theorem 1. This “parsimony”

property is important for sensor nodes with limited storage

capacity. The following theorem shows that the Bayesian

conjugate analysis with discount factor specification is efficient

in both a time and a space sense.

Theorem 2. For a DLM model (5) with unknown Σ and dis-

count factor specification of W t, the algorithm in Theorem 1

has constant O(1) space complexity and linear O(n) time
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Fig. 3. Bayesian conjugate inference with a noninformative prior

complexity, where n is the point the update stops or the size

of the time series.

Proof. Note the recurrent relationship between (8a) and (8c):

there is no need to store at,Rt specifically as they can

be updated directly upon {mt−1,Ct−1}. At each time in-

stance t, the procedures require the exact local storage of

et,f t,Qt,Kt,St, n, and no historic sensor data need to be

stored; therefore, the space complexity is constant at each time

instance. For time complexity, we calculate the complexity of

each step in Theorem 1: at each t, (8a) is of O((mp)2+m3);
(8b) is of O(p×mp+m2); (8c) is of O(m2+mp×p+m2+p2);
the total is O((mp)2 +m3 +mp2) = O(max(m, p)4). Note

when a DLM is chosen, m, p are both constant integers:

therefore the time complexity is constant at each t, leading

to a linear growth as t increments.

B. Model update with missing observation

Sensor nodes are unreliable, not only in the sense that sensor

observations might be faulty, but that they may not be available

from time to time. In both cases, the rational practice is to treat

the observation as missing. Fortunately, model update with

missing observation can be performed easily with Bayesian

learning. To deal with a missing observation at t – so yt is

missing – one simply adopts the following update procedures

to replace Equation (8c):

mt = at;Ct = Rt;nt = nt−1;St = St−1; (11a)

the procedures follow because p(θt,Σ|y1:t−1,yt = NULL) =
p(θt,Σ|y1:t−1), the new observation provides no real update

to the model. At the (t+ 1)th evolution step after the update

step, the following evolution procedure is adopted instead of

Equation (8a):

at+1 = (Gt+1 ⊗ Ip)mt, Rt+1 = Gt+1CtG
′
t+1 +W t,

(11b)
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where W t =
1
δP t is the previous evolution matrix specified

at t. Note the update actually maintains a constant step-

ahead evolution matrix, W t+1 = W t. This modification

prevents the explosion of the evolution variance Rt when

multiple k consecutive observations are missing. To see this,

if {yt+1:t+k} are missing, the ordinary evolution step (8a)

would lead to

Rt+k = GkCtG
k′/δk,

where Gk ! Gt+kGt+k−1 · · ·Gt+1. Since δ lies in (0, 1],
Rt+k will increase exponentially as k accumulates, which

contradicts the linear form of DLM [12]. Figure 4 demon-

strates graphically the model update procedures with missing

observations. Note the forecast interval (model uncertainty)

automatically adjusts when data is missing.

h-step-ahead forecast: Theorem 1 provides the algorithm

for calculating the one-step-ahead forecast distribution. The

general h-step-ahead forecast distribution with h > 1 can

actually be easily obtained by treating the future observations

{yt+1:t+h−1} as missing. The result is true because the

following identity

p(yt+h|y1:t) = p(yt+h|y1:t,yt+1:t+h−1 = null). (12)

V. SENSOR CONTROL WITH DLM

To show the practical use of DLM, we investigate the

sampling scheduling problem of WSNs. An DLM based

data collection framework featuring adaptive sampling and

guaranteed sampling accuracy is proposed and evaluated in

this section. The framework forms a self-organizing distributed

solution where each node determines locally the sampling

decisions with the help of DLMs and global good results can

be achieved out of this self-managed scheme.

A. Problem Statement

Let ϵ be the precision required of the sensor data. For

example, if the true signal is s ∈ R, then any value within

the range of [s − ϵ, s + ϵ] is satisfactory. The problem is to

determine the sampling time for each sensor node such that

the sampled and collected data meet the precision requirement

with small computational overhead. As pointed out by Alippi

et al. [21], the energy spent on sensing is comparable to

other intensive sensor activities including RF communication.

However, blindly reducing sensing will lead to insufficient

samples, which in turn results in inadequate data collection.

Therefore, the trade-off between accuracy (resolution) and

energy efficient needs to be resolved by the autonomic control.

B. Overview

The proposed solution starts with a one-off model learning

phase in which each sensor node learns its local DLM model

according to Theorem 1 until a pre-determined Nl number of

sensor observations have been learnt or the model parameters

have stabilised. To ease the computation burden for the sensor

nodes, only univariate DLM models are maintained for each

sensor data series. For the convergence test, we examine the

prediction’s variance

Λt =
QtSt−1

nt−1 − p+ 1

and stop the learning phase if

|Λt −Λt−1|

Λt−1 < 0.01.

The objective of this phase is to obtain a functioning DLM

model with learnt and stabilised model parameters. Note that

to communicate the learned result, the nodes are not required

to send back the learning data to the sink but only the posterior

model parameters. After receiving the model parameters, the

sink has the synchronised DLM models maintained in the

network.

The operational phase commences after the learning phase.

Figure 5 shows the procedures in the operational phase graph-

ically. Each node first decides the next sampling time, T , by

making inference on the DLM model. The sampling schedule

decision is made such that only those “valuable” or “interest-

ing” samples are taken, and the rest is lost during the period

in between. The nodes then act according to the sampling

schedule: upon time T , the node takes a series of Iupdate

consecutive samples and updates its local model accordingly.

For data collection applications, the node may also send the

sensor data to the sink to update both the local and server DLM

models such that the DLM model is synchronised again. Any

missing elements (which should have been collected during

the sleeping period) can be easily restored at the server-side

by running a DLM inference. The details on the scheduling

algorithm and missing value inferences are presented in the

following sections.
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server model by Theorem 1

Sleep until T

Fig. 5. Dynamical linear model based data collection framework flow chart

C. DLM Based Sampling Scheduling

According to Theorem 1 and (12), an h-step ahead predic-

tion distribution is still Student T distributed:

yt+h|y1:t ∼ T(f(h), Q(h), ν(h)).

Therefore, a prediction interval can be derived:

P

(

f(h)− tα,ν(h)
√

Q(h) <

yt+h < f(h) + tα,ν(h)
√

Q(h)
)

= 1− 2α, (13)

where tα,ν(h) is the critical percentile value for the Stu-

dent T random variable. For example, when α = 2.5% is

used, the future observation yt+h will fall in the envelope
[

f(h)− t0.025,ν(h)
√

Q(h), ft(h) + t0.025,ν(h)
√

Qt(h)
]

with

a 95% level of confidence, conditional on all the historic data.

As h rolls forward, the uncertainty accumulates so the in-

terval expands. In view of this, a sensor node applies a greedy

algorithm to decide when to sample again: as long as the

confidence interval is smaller than the user-specified precision

interval [f(h)− ϵ, f(h) + ϵ], there is no motivation to sample

the environment as the future observations are likely with high

confidence to be within the forecast interval; meanwhile its

precision is also satisfactory. Algorithm 1 summarises this

scheduling decision making procedure.

Algorithm 1 Sampling scheduling greedy algorithm

Input: Precision ϵ (ϵ > 0); Forecast limit H; Forecasting

confidence level α
1: h← 1
2: while h ≤ H do

3: Calculate Q(h), ν(h) based on Theorem 1 and (12)

◃ Calulate the h-step ahead prediction interval

4: if tα,ν(h)
√

Q(h) > ϵ then

5: break outer while loop

6: end if

7: h← h+ 1
8: end while

9: T ← h− 1

D. Model Update

Upon the scheduled sampling point T , the sensor node

reaches the model update stage, in which the node samples the

environment and updates the local model again. This update

stage is necessary as the accumulating uncertainty has reached

a threshold such that model inference cannot satisfy user’s

precision requirement.

We denote the sampling size as Iupdate, i.e. at T the sensor

node takes Iupdate consecutive samples. These sensor readings

need to be reported back to the sink so that both the local

node and the sink update their DLM models according to The-

orem 1. Iupdate may be defined by the user as a fixed constant.

However, it can also be determined dynamically on an on-

demand basis: the update stage finishes when the predictive

interval shrinks and falls below a threshold, say the user-

defined precision ϵ again.

E. Data restoration at the sink

For data collection applications, the sink needs to report

all the sensor measurements for end users. This means the

sink needs to recover those missing observations that were

not taken due to the adaptive sampling policy.

With the DLM formalism, the data restoration can be

achieved with little computational effort. Assume observation

yt is missing. Since the local and server models are always

synchronized during the update phase; therefore, the sink

can simply supply the one-step-ahead point forecast ft from

Theorem 1 as the missing values for each of the univariate

DLM it maintains. In other words, the missing values are

replaced by ft = Eyt|y1:t−1
[yt]. Note it can be shown that

the point forecast has the smallest expected squared loss,

Eyt|y1:t−1
[(yt − ft)

2] =

∫

(yt − ft)
2p(yt|y1:t−1)dyt,

which means the estimator has the smallest squared dis-

crepancy between the missing observation according to the

posterior distribution, making it the best estimator for the

missing value yt.
An alternative method is to train an additional multivariate

DLM model out of the received but incomplete data so that the

cross sectional correlations can also be used to interpolate the

missing data. The multivariate DLM learning result Theorem 1

can be used to learn the model. Since each univariate DLM

is operated independently; therefore, the received data might

happen to complement each other: at each time instance t:

1) the whole observation vector yt is missing; or

2) some subset yt,1 of it is missing while the rest yt,2 are

observed, where yt = (yt,1,yt,2)
′;

the first scenario can be handled by the same way as described

above, while for the later case, the conditional student T result

can be employed to interpolate the missing partial data. In

other words, the missing values are replaced by the mean

of the conditional distribution, Ey
t
|y

1:t−1
[yt,1|yt,2]. Similarly,

the estimator also has the smallest expected squared loss with

respect to the conditional posterior prediction distribution.



To summarize, apart from the data transmission during the

model update phase, there is no other server-sensor commu-

nication is required. First, the scheduling decisions are self-

determined at each local sensor node; and the data restoration

at the server works purely on the data already received without

any further query from the sensors. Therefore, the solution is

indeed bottom-up and self-organizing.

VI. EVALUATION

We present an evaluation in two parts. Firstly we show

that the update procedures can all be feasibly implemented

on a platform of the capabilities typically used for sensor

networks. Secondly, we simulate the behaviour of our system

against commonly-used trace data. We defer evaluation of a

deployment in the wild to future work.

A. Implementation

To demonstrate the algorithm is a feasible solution for

resource constrained sensors, we have implemented the frame-

work in nesC on TinyOS 2.1.0 [22] and evaluated it using

IEEE 802.15.4 complaint TMote Sky mote. It consists of

an processor running at maximum 8MHz and RAM of 10

KB [23]. The relative small RAM size becomes a major

hindrance for the system and application program. The pro-

posed solution with two univariate DLM models embedded

(assumed to be temperature and humidity) is implemented.

The implementation has a footprint of 584 RAM (in bytes)

and 21432 ROM (in bytes), which only account for 5.7% and

43.6% of the total size.

B. Simulation Results

We drive our simulations from sensor data collected as part

of a real-world deployment [24]. The simulation is written

in R [25] and the results reported are summarized over

ten independent runs with sensor data series (temperature,

humidity and voltage sensors) randomly selected from the data

set. Our method is assessed from two aspects: data collection

accuracy, and communication saving. The former assessment

shows the quality of the autonomously made decision; the

latter demonstrates how sensor nodes can benefit from the

sound decisions. We compare the results against the fixed rate

sampling schedule which is currently the most widely used

scheduling solution regarding the two aspects.

1) Assessment on decision making: To assess the autonomic

control, we examine the quality of the collected data that is

sampled based on the DLM enhanced scheduling algorithm.

Two metrics, Mean Absolute Difference (MAD) and Precision

Satisfaction are used. The metrics are defined as

Mean Absolute Difference =
1

N

N
∑

i=1

|d̃i − di|, (14)

Precision Sat. =

∣

∣

∣
{d̃i : |d̃i − di| < ϵ, i ∈ 1, . . . , N}

∣

∣

∣

N
, (15)

where di, d̃i are the original data collected according to the

fixed rate sampling schedule and the data collected as per

the sampling scheduling respectively. MAD shows the average

difference between the data, while precision satisfaction shows

the percentage of the collected data is satisfactory towards the

user’s requirement.

Tables II to IV show the results for temperature, humidity

and voltage data respectively. Two DLM models, 1st (level

model) and 2nd (trend model) order polynomial DLMs, are

considered. For each type of sensor, we report the simulation

results on different levels of precision ϵ requirements. The

reported results are the averages together with the standard

deviations over the ten independent runs. The following ob-

servations can be made based on the tables.

• First, for all the different settings, the mean absolute

difference achieved are below their precision requirements:

which means on average the decisions made satisfies the

application’s requirements. It is also interesting to note the

solution adapts itself well to the user’s precision require-

ments. When a demanding data precision is required, the

solution delivers the performance as required, which can

also be seen graphically from Figure 6.

• Second, all the precision satisfaction entries are around

95% (if ± the standard deviation). The high satisfaction

rates imply the decisions made in general are sound and

satisfactory. Recall a 95% credible interval is used in the

simulation, the results roughly matches our expectation,

which also means the DLMs are reliable in delivering the

forecasts.

• Third, the trend model outperforms the level model coun-

terparts in data quality for most of the settings. However,

the difference on voltage is negligible. This is due to the

fact that the voltage data is more stable than the other two

data (it does not grow or decline randomly); therefore, a

local level model without stochastic trend component is

sufficient to model its dynamics.

• Forth, the effect of multivariate DLM based server side

data restoration is also apparent from the results. The

spatial correlations between the temperature data is ex-

ploited to construct a multivariate DLM model at the

sink. According to Table II, both the MAD and precision

satisfaction are improved by the multivariate extension.

Note the multivariate restoration makes use of the same

amount of data as the univariate restoration; therefore, they

have the same energy saving as the univariate case.

• Last but not least, the proposed solution works on all the

three types of sensors, which also means the DLMs are

general enough to model different types of data.



TABLE II
SIMULATION RESULTS ON TEMPERATURE SENSOR DATA

Model
Mean Absolute Difference (°C) Precision Satisfaction (%) # of Data Data

Univariate Multivariate Univariate Multivariate Messages Saving (%)

DLM-Level ϵ = 0.3 0.086(±0.01) 0.0682(±0.01) 93.94(±1.39) 95.4(±2.39) 5841.4(±196.5) 59.4(±1.36)
DLM-Level ϵ = 0.5 0.114(±0.017) 0.07(±0.01) 95.96(±0.59) 97.6(±2.51) 5364.4(±260.8) 62.8(±1.81)
DLM-Level ϵ = 1.0 0.217(±0.037) 0.15 (±0.051) 96.5(±1.16) 97.7 (±2.50) 3776.7(±69.12) 73.8(±0.48)

DLM-Trend ϵ = 0.3 0.062(±0.009) 0.047 (±0.007) 95.7(±1.13) 96.7 (±3.93) 6274.3(±270.78) 56.4(±1.88)
DLM-Trend ϵ = 0.5 0.079(±0.015) 0.054 (±0.012) 96.9(±0.91) 97.9 (±2.52) 5899.4(±121.4) 59.0(±0.84)
DLM-Trend ϵ = 1.0 0.167 (±0.033) 0.125 (±0.21) 96.8(±0.82) 98.1 (±2.43) 5295.5(±74.03) 63.2(±0.51)
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Fig. 6. Evaluation of the DLM-based solution on temperature sensor data.
The top figure shows the original data; the middle frame is the data collected
by the level model with ϵ = 1°C; the bottom frame is the result for level
model with ϵ = 0.3°C.

TABLE III
SIMULATION RESULTS ON HUMIDITY SENSOR DATA

Model
Mean Absolute Precision Data

Difference (%) Satis. (%) Saving (%)

Level ϵ = 2.5 0.564(±0.208) 94.07(±2.39) 44.2(±15.43)
Level ϵ = 5.0 1.178(±0.171) 95.58(±0.98) 63.90(±7.83)

Level ϵ = 10.0 2.005(±0.534) 98.2(±2.16) 83.01(±0.0)

Trend ϵ = 2.5 0.301(±0.136) 97.36(±1.54) 32.2(±13.6)
Trend ϵ = 5.0 0.819(±0.136) 97.23(±0.96) 52.15(±8.06)

Trend ϵ = 10.0 1.827(±0.318) 97.6(±1.46) 73.76(±4.72)

TABLE IV
SIMULATION RESULTS ON VOLTAGE DATA

Model
Mean Absolute Precision Data

Difference (%) Satisf. (%) Saving (%)

Level ϵ = 0.01 0.002(±0.002) 94.3(±3.19) 47.5(±25.86)
Level ϵ = 0.03 0.007(±0.001) 96.3(±1.63) 91.5(±0.76)
Level ϵ = 0.05 0.007(±0.001) 98.5(±1.54) 91.8(±0.0)

Trend ϵ = 0.01 0.002(±0.002) 94.6(±2.71) 47.9(±25.3)
Trend ϵ = 0.03 0.007(±0.001) 96.4(±1.81) 91.5(±0.79)
Trend ϵ = 0.05 0.007(±0.001) 98.4(±1.6) 91.8(±0.0)

2) Assessment on communication saving: According to Ta-

bles II to IV, it is clear that for all three types of sensors, the

proposed solution significantly reduces the data communica-

tion in comparison with the original solution. For example,

for the temperature sensor at a precision requirement level of

ϵ = 0.5°C, the amount of actual data communication of the

local level model is 5364.4 messages, and the corresponding

saving is over 62.8%, which means over 62% of the original

data is exempted from sending back to the sink. Similar

results can be found for the other two sensors. It is interesting

to see how the solution adaptively responds to the different

settings of the precision requirement. In general, when the

less precise data is required, the solution saves more on data

communication.

VII. CONCLUSION

In this paper, we put forward the use of Bayesian dynamic

linear models for local sensor node control. DLMs are general

models that can capture the physical context, which provides

valuable information for the local node to make informed deci-

sions. More importantly, lightweight learning algorithms exist

such that all the model inferences can be done independently

at local sensor node level without any form of inter-node co-

ordination or centralized control.

To prove the effectiveness of DLMs, we consider the

adaptive sampling problem: a practical problem facing most

data collection WSN deployment. Simulation results show that

autonomic local decisions can be made with the help of DLMs.

Although each sensor node acts independently according to

its local DLM model, the overall performance can be further

boosted by exploiting the cross-sectional correlations still

with the assistance of DLM. For future work, we are going

to examine the solution by real world experiments. How

the global performance can be further improved is also an

interesting question. We are going to examine the application

of Bayesian smoothing technique in data restoration. When the

variable size grows, the multivariate DLM model might face

computation difficulty. Employing sparse covariance structure

will be explored to solve higher dimensional problems.



APPENDIX A

PROOF OF THEOREM 2

Proof. An indirect proof is to show the equivalence of (5)

and the Matrix Normal Dynamic Linear Model (MNDLM)

developed in [18]. However, due to the different specifications

of IW, the estimation rules would diverge slightly; a direct

proof is given below. By Kalman Filter theory, the estimation

rules for at,f t follows, as (5) is still a DLM.

(1) Evolution step: Var[θt|Σ,y1:t−1] = (Gt⊗Ip)(Ct−1⊗
Σ)(Gt ⊗ Ip)′ +W t ⊗Σ = (GtCt−1G

′
t ⊗Σ) +W t ⊗Σ =

(GtCt−1G
′
t +W t)⊗Σ = Rt ⊗Σ.

(3) Prediction step: the variance of the conditional distribu-

tion, QtΣ, can be proved by the same way as step one except

Qt ⊗ Σ = QtΣ as Qt is a scalar. The unconditional result

follows due to the property of Normal Inverse Wishart [17].

(3) Update step: denote the precision matrix Λ = Σ−1; by

Bayes’ theorem:

p(Σ|y1:t) ∝ p(Σ|y1:t−1)p(yt|y1:t−1,Σ))

∝ |Λ|(nt−1+p+1)/2exp {−tr(St−1Λ)/2}

|Λ|1/2exp
{

−(yt − f t)
′Q−1

t Λ(yt − f t)/2
}

∝ |Λ|(nt−1+p+1+1)/2exp {tr (ete
′
t/Qt ·Λ) + tr(St−1Λ)}

= |Λ|(nt−1+p+1+1)/2exp {tr (StΛ)} ∝ IW(nt,St),

which proves the update procedures for Σ. The update rules

for θt can be proved by noting
[

θt

yt

]
∣

∣

∣

∣

y1:t−1,Σ ∼ N

[[

at

f t

]

,

[

Rt ⊗Σ RtF
′
t ⊗Σ

F tR
′
t ⊗Σ Qt ⊗Σ

]]

;

apply Gaussian regression theory [26],

θt|Σ,y1:t ∼ Nmp(mt,Ct ⊗Σ)

is proved.

The above are valid for all t > 0, which proves the theory.
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