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ABSTRACT. Situations, the semantic interpretations of context, provide a better basis for selecting
adaptive behaviours than context itself. The definition of situations typically rests on the ability
to define logical expressions and inference methods to identify particular situations. In this
paper we extend this approach to provide for efficient organisation and selection in systems
with large numbers of situations having structured relationships to each other. We apply lattice
theory to define a specialisation relationship across situations, and show how this can be used
to improve the identification of situations using lattice operators and uncertain reasoning. We
demonstrate the technique against a real-world dataset.

RÉSUMÉ. Les situations, les interprétations sémantiques du contexte, fournissent une meilleure
base pour sélectionner des comportements adaptatifs que le contexte lui-même. La définition
des situations repose typiquement sur la capacité de définir des expressions logiques et des
méthodes d’inférences pour identifier des situations particulières. Dans ce papier, nous éten-
dons cette approche pour fournir une organisation et une sélection efficaces à des systèmes
avec un très grand nombre de situations entretenant des relations structurées entre-elles. Nous
appliquons les treillis de Gallois pour définir une relation de spécialisation sur les situations,
et nous montrons comment le résultat peut être utilisé pour améliorer l’identification de situa-
tions utilisant les opérateurs du treillis et le raisonnement incertain. La technique présentée est
finalement validée sur un ensemble de données de taille réelle.
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1. Introduction

Pervasive computing attempts to make human lives simpler through digital en-
vironments that are sensitive, adaptive, and responsive to human needs (Saha et
al., 2003). Pervasive computing systems operate under dynamic and ever-changing
environments, which require systems to react to dynamic changes in a seamless and
unobtrusive manner. Context-aware computing is an enabling technology for per-
vasive computing. Context-aware computing systems provide adaptive services or
behaviours according to different contexts. Any information that can be acquired
from the environment can be considered as context (Loke, 2004). It can be sensed
from physical sensors, profiled from users, or derived from application- or meta-
information existing in systems. Context is acquired without any further interpretation
and it may be meaningless, trivial, vulnerable to small changes, or uncertain. A sys-
tem might not necessarily be expected to adapt its behaviour to each and every change
of context. If the context is incorrectly reported, or is considered irrelevant to appli-
cations, a problem will occur when a system makes a responsive action in reaction
to real-time contextual changes (Schilit et al., 1994). Therefore, it is impractical to
design behaviours that adapt directly to low-level context (Dobson et al., 2007).

Situations capture the particular states that are interesting to applications. They
are a semantic interpretation of context (Coutaz et al., 2002; Dobson et al., 2006).
They are defined on contexts with a logical description that represents the invariant
characteristics of contexts and their combinations (Weiet al., 2006). When individual
pieces of context satisfy a situation’s logical description, then this situation is consid-
ered to be identified or occurring. Context is concrete and trivial data from sensors,
while situations are inferred and abstracted by evaluating context against a logical de-
scription. By abstracting contexts into situations, it is easier to resolve from imperfect
context, capture meaningful contextual changes, and make it transparent to add or re-
move context sources. Therefore, situations are more meaningful, stable, and certain,
so they are considered more crucial than individual pieces of context in determining a
system’s actions.

It is beneficial to define system behaviours on situations, and make any context
or contextual change transparent. For example, a meeting detection application (e.g.,
Sensay (Siewiorek et al., 2003)) should not be overly concerned with individual pieces
of context, such as noise levels; rather it should concern itself with what the actual sit-
uation is – in this case, whether or not a meeting is taking place. A “meeting” situation
can be composed with specific contexts: whether there are more than two people in a
designated place; whether the current time is during office hours; or whether the am-
bient noise levels are high. When a new type of context is introduced, for example, the
introduction of a calendar sensor that can detect when meetings are scheduled, then
the situation specification is modified. However, its associated actions (e.g., change
the mode of the attendances’ mobile phones) will not be affected.

As the study of situations has become more popular, a huge number of situations
are produced in an ad hoc way (for example as outlined in Section 2). In order to ben-
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efit from using situations, it is necessary to analyse the internal relationships between
situations. A situation can be decomposed into a set of smaller situations, which is a
typical composition or dependence relation between situations. One situation can be
considered more general than another situation, which is a specialisation relation: for
example, a conference meeting situation is considered more specific than a meeting
situation, because the conditions inherent in the conference meeting situation sub-
sume or imply the conditions in a meeting situation. Alternatively, a situation may be
required to precede another situation; that is, there is a temporal order between the
situations.

Changes in situations may cause the system to adapt its behaviour, and in turn,
this change in behaviour could lead to the generation of new contexts leading to new
situations. Dealing with the rich internal relations between situations requires an effi-
cient approach to organise situations, detect inconsistent logical descriptions between
situations, and study the dynamic evolution of situations. These challenges are also
identified as future work by Loke (2004).

This paper does not aim to provide a novel representation for situations: we use
the typical representation – logical predicates. We focus instead on how to study the
characteristics of situations by applying lattice theory. Situation lattices will be used
to analyse the relationships between situations. They will help to maintain consistency
and integrity when defining situations. This makes it possible to prevent runtime errors
from occurring since the consistency and integrity constraints will already have been
checked at design time. We also study the issue of uncertainty based on situation
lattices.

The remainder of this paper is organised as follows. Section 2 introduces the
current state of research in studying situations; Section 3 details the definition and
construction of situation lattices; Section 4 analyses the dependence relationship be-
tween situations, illustrates how to maintain the consistency and integrity of situation
descriptions, and demonstrates how to improve forward chaining with the use of the
situation lattice. Section 5 discusses two approaches for dealing with uncertainties in
situation identification, and provides the evaluation result using a real dataset. Finally,
Section 6 draws a conclusion to the paper and outlines the future direction of this
research.

2. Related Work

Past research on context-aware systems placed emphasis on modeling low-level
context. More recently, the interest is on how to abstract, represent, and identify
situations from the low-level context. Early attempts such as Gu et al.’s ontology-
based model used first-order logical predicates to define situations (Gu et al., 2004;
Ranganathan et al., 2004). These attempts simply composed context and situation
with logical operators.
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Yau et al. analyse the semantics of situations and gave them formal representa-
tions (Yau et al., 2006). Context is considered as any instantaneous, detectable, and
relevant property of the environment, the system, or users. A situation is a set of
contexts over a period of time that is relevant to future device actions. A situation
can be atomic or composite. An atomic situation is composed of contexts in terms
of context operators, including function, arithmetic or comparison operators, and time
constraints. The time constraints involve forAny, exists, time-stamp, offset,
and interval. A composite situation is composed of atomic or other composite
situations in terms of logical operators and time constraints. This helps application
designers to specify situations using formal expressions. Yau et al. develop situation
ontologies following these formal representations. This facilitates the analysis and
specification of situation-awareness requirements of trustworthy ubicomp application
software.

Costa et al. study the classification of situations in terms of their composi-
tion (Costa et al., 2006). In their theory there exist three fundamental concepts: entity,
context, and situation. Context is what can be said about an entity, and it cannot exist
by itself. Context is characterised as either intrinsic or relational. An intrinsic context
defines a type of context that belongs to the essential nature of a single entity and does
not depend on the relationship with other entities. An intrinsic context is immediately
derived from a single piece of context. A relational context associates multiple pieces
of context in a certain relation. A formal relation is defined between two pieces of con-
text directly without any intervenient entity, such as greater than, subset of, nearness,
and distance. Situations model particular states of affairs that are of interest to ap-
plications. They are composite concepts whose constituents are entities, intrinsic and
relational contexts, and formal relations. Situations can be composed of situations
themselves. In addition, since a situation exhibits temporal properties, it is framed
by a chronoid that defines a temporal duration. With this conceptual modeling, de-
velopers are able to model relevant changes in the state of affairs of a context-aware
application’s universe of discourse.

Yau et al and Costa et al elaborate the natural characteristics of situations, includ-
ing the relationship between context and situations, the definition and composition
of situations, and the internal relationship between situations. This provides a solid
foundation of our work and inspires our idea of organising situations with respect to
their internal relations.

Loke presents a declarative approach to representing and reasoning with situations
at a high level of abstraction (Loke, 2004). A situation is characterised by imposing
constraints on the output or readings returned by sensors. A situation occurs, when the
constraints imposed on this situation are satisfied by the values returned by sensors.
For example, a “in_meeting_now” situation occurs when a person is located with more
than two persons and there is an entry for meeting in a diary. These constraints are
represented as a logic program. This approach is based on the logical programming
language LogicCAP that embeds situation programs in Prolog, which provides a high
level of programming and reasoning situation for the developers. The logical theory
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makes it amenable to formal analysis, and decouples the inference procedures of rea-
soning about context and situations from the acquisition procedure of sensor readings
from context-aware systems. This modularity and separation of concerns facilitates
the development of context-aware systems. Loke’s work deals with an individual sit-
uation program, while our work focuses on organising a set of situations. He presents
the logic definitions of completeness and soundness of a context-aware system, and
pointed out that it is up to developers to verify soundness and completeness with re-
spect to various systems. However, it is a hard task for developers, so we propose an
approach to check these automatically during the procedure of creating situations.

Thomson et al provide a reusable library of situation specifications that helps to
automatically determine situations (Thomson et al., 2006). They express different lev-
els of granularity of a situation through specification inheritance. New specifications
are created as variations of existing ones so that the same situation can be interpreted
at different levels of abstraction. We apply a similar approach to expressing situa-
tions through inheritance, however, the situation lattice we propose is a higher level
structure that can be used to organise the specifications and further exploit richer char-
acteristics in situations.

Most of the current work studies the composition of situations and formal repre-
sentations. However, none of them have proposed a formal mechanism to organise
the situations, based on which consistency and integrity can be maintained, and un-
certainty issues are explored.

3. Situation Lattices

Situation lattices are inspired by Woods’ use of lattice theory to recognise situa-
tions in linguistics (Woods, 1978). Building on the basic concepts of lattice theory,
we will define the situation lattice and illustrate its construction from the ground.

3.1. Lattice Theory

A lattice is defined on a partially ordered set (poset). A poset is a set with a partial
order, which is a binary relation R over a set P that satisfies reflexivity, antisymmetry,
and transitivity. A poset (P, ≤) is a lattice if for any pair of elements in P, there exists
the least upper bound (join) and greatest lower bound (meet) for them in P.

Lattice theory is useful studying the structures with a partial order. It has many
practical applications in distributed computing such as the works done by Charron-
Bost (1991), Tarafdar et al. (1999), and Garg et al. (2003). Garg et al. applied lattice
theory to analyse the partial order between traces of a distributed program. This is
used to determine whether this program satisfies a given temporal logic formula, to
detect a predicate in a computation, and to compute the slice of a computation with
respect to the predicate.
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Lattice theory is also applied in the Formal Concept Analysis (FCA) (Ganter et
al., 1997). FCA is a method for data analysis, knowledge representation and infor-
mation management. In FCA, the data are structured into a formal abstraction – a
concept that is constituted by its extension and intension: its extension is the col-
lection of objects belonging to the concept and its intension is the collection of all
attributes common to its extension. The concept lattice organises the formal concepts
with respect to the subconcept-superconcept relation. This concept order is based on
a coupled extensional and intensional order. A concept A is called a subconcept of B
if and only if the extent of A is a subset of that of B, and the intent of B is a subset of
that of A. The concept lattice is used to unfold data, making their conceptual structure
visible and accessible. This is helpful in finding patterns, regularities and exceptions
in data.

3.2. Construction of a Situation Lattice

A context-aware computing system usually attempts to gather all the contexts from
available sensors. These contexts can be meaningless or imperfect so that they can-
not be directly used to trigger a system’s new behaviour or service. They need to be
composed and decoded to a set of meaningful and stable elements, situations, which
abstract and refine the contexts. In this section, we will construct a situation lattice
in which situations are organised in terms of their internal relationship. The essential
characteristics of the situation lattice are the ability to support the reuse of logical de-
scriptions between situations and represent situations in various levels of abstraction.

Each situation is characterised with a logical description that takes context or other
situations as input and that defines logical operators between them. A logical descrip-
tion takes the form of l(t1, . . . , tm), where ti can be a context predicate, or a situation.
Here, a context predicate represents a piece of context as a first-order logic predi-
cate (Ranganathan et al., 2004), e.g, hasLocation(Erica, UCD), indicating a per-
son named “Erica” is located on campus “UCD”. A situation is regarded occurring or
identified, iff its logical description is satisfied by the input context. The specialisation
relationship of situations is defined as follows.

Definition 1. A situation si ∈ S is more specific than another situation sj ∈ S,
labelled as si ≤ sj , iff si’s logical description li entails sj’s logical description lj ,
labelled as li ` lj .

The above definition implies that when the logical description of si is satisfied,
then the logical description of sj will be satisfied as well. Therefore, the identification
of a situation si implies the identification of its more general situation sj . Alterna-
tively, sj is called a more general situation than si. If two situations do not have a
specialisation relationship between them, then they are called disjoint situations.

A particular case of the specialisation relationship is the immediately more spe-
cific relation. If a situation s is defined directly under a situation s′, then it is called
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immediately more specific than s′. If a situation s is defined as an immediately more
specific situation from a set of disjoint situations {s1, . . . , sn}, then its complete log-
ical description l will inherit the descriptions from these situations and be extended
with a new description, which is written as l = l1 ∧ . . . ∧ ln ∧ l∗, where li is the
complete logical description of a situation si(1 ≤ i ≤ n) and l∗ is an extended logical
description particular to the situation s. When creating a situation, only the immediate
specialisation relationship is defined between situations, while the general specialisa-
tion relationship can be derived from the former by transitivity.

We made some assumptions on the constructed situation set. Among all the defined
situations S,

– there does not exist any two situations that have the same complete logical de-
scription. ∀si, sj ∈ S, if li = lj , then si = sj .

– there exists a unique top situation s>, which is the most general situation. That
is, ∃s ∈ S, if s> ≤ s, then s = s>. This top situation is identified when a system is
running properly. Its logical description is the tautology T .

– there exists a unique bottom situation s⊥, which is the most specific situation.
That is, ∃s ∈ S, if s ≤ s⊥, then s = s⊥. This bottom situation is identified when a
system is unstable or is running improperly. Its logical description is the contradiction
F .

Before we define a situation lattice, we will demonstrate that the specialisation
relationship is a partial order.

Proposition 2. This specialisation relationship is a partial order.

Proof. We need to prove that this specialisation relationship satisfies reflexivity, anti-
symmetry, and transitivity.

– Reflexivity Given a situation s, its logical description satisfies l ` l, So, s ≤ s.
– Anti-symmetry Given two situations si and sj , if si ≤ sj , then li ` lj , so there

exists some logical description l′ such that li = lj ∧ l′; if sj ≤ si, then lj ` li, so there
exists some logical description l′′ such that lj = li ∧ l′′. Then lj = lj ∧ l′ ∧ l′′, so
l′ = l′′ = T , when si (or sj) is not the unique top situation. Thus lj = li, so si = sj .

– Transitivity if si ≤ sj , then li ` lj ; if sj ≤ sk, then lj ` lk. li ` lk, so si ≤ sk.

Definition 3. A situation lattice, L, is defined as L = (S,≤), where S is a set of
situations and the partial order ≤ is a specialisation relation between situations.

Since this is a lattice, there exists a join and meet for any pair of situations in S.
If this pair of situations have the specialisation relationship between them, then their
join is the more general one while their meet is the more specific one. If this pair of
situations are disjoint with each other, then their join is the most specific one among all
of their more general situations, while its logical description contains the disjunction
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of that of these two situations. Their meet is the most general one among all of their
more specific situations, while its logical description contains the conjunction of the
descriptions of these two situations.

3.3. An Example of a Situation Lattice

This section demonstrates an example of how to construct a situation lattice as
shown in Figure 1. This situation lattice aims to describe the in-office activities of a
postgraduate student. The situations are abstracted from the context currently avail-
able in our environment. There are three sensors producing context:

– Ubisense is a tag-based positioning sensor network, which is used to track an
object’s real-time location in an indoor environment. Ubisense provides a precise
location of a person in the form of coordinates. The coordinates can be mapped to a
place with a human-understandable name.

– Activity sensors sense the activities of keyboard and mouse. If the keyboard or
mouse is used, then this sensor will send an “active” state to indicate that the computer
is being used at the moment. The frequency that it sends the data implies the states of
the computer being used.

– Calendar sensors capture the scheduled events in the personal and group calen-
dars. An event can be coarse-grained, for example, a person is on holiday during a
period; while it can also be fine-grained, for example, a meeting event is scheduled,
by specifying its attendees, starting time, end time, location, and content.

From these contexts, we can create a few basic situations, which interpret single
pieces of the context. They are immediately under the top situation s>. For example,
the “on campus” situation l_u indicates that the location of this person is on cam-
pus. Basic situations can be constrained and composed into composite situations. For
example the “at work” situation aw indicates that the person is at work, which is com-
posed of basic situations: the “on campus” situation l_u and the “scheduled in office”
situation c_i. The conjunction of their logical descriptions is contained in the logical
description of aw. Also the basic situations can be refined; for example, the situation
l_u is refined to be the “ in office” situation l_o, indicating that a person is in her
office, while her office is contained in the university. Its logical description extends
that of l_u with a new one: (∃o)(hasOffice(p, o) ∧ isContainedIn(lo, o)).

Given more detailed contexts, more specific situations are generated. For example,
the “busy working” situation bw indicating that a person is busy at working, when her
computer is intensively used (a_iu), she is located in her office (l_o), and her calendar
does not have scheduled events at the moment (c_noentry).

The meet of a pair of situations encapsulates the least conjunction of logical de-
scriptions of these situations. This is the most general situation whose logical de-
scriptions are reused by their more specific situations. For example, the meet of the
situations l_u and c_i is the “at work” situation aw, which can be specialised into more
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TOP(s1)
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busy working

cb
coffee break

m
meeting

Figure 1. An example of a situation lattice

specific working situations, like the “busy working” situation bw and the “meeting”
situation m.

The join of a pair of situations encapsulates the greatest overlapping logical de-
scription of these situations, which is the most specific situation above them. For
example, the join of the computer being “intensively used” situation a_iu and the
computer being “not intensively used” situation a_nu is the “computer used” situation
a_u. The situations a_nu and a_iu are covered (or contained) in the latter situation
a_u.

4. Analysing Situation Lattices

This section will demonstrate that the situation lattice helps to explore the depen-
dence relationships of situations, to maintain the consistency and integrity of situa-
tions, and to improve the efficiency of a forward chaining algorithm.

4.1. Exploring Dependence Relationships Between Situations

A dependence relation between situations is discussed in most context modeling
research by Gu et al. (2004) and Henricksen et al. (2004). This relationship can also
be reflected in the situation lattice.
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The situation lattice is regarded as a specialisation relationship between situations
if it is observed downwards from the top. A situation s ∈ S is more specific relative
to all of the situations above it. It can also be considered as a dependence structure
if it is observed upwards from the bottom. A specific situation can be decomposed
into a few more general situations. Its satisfiability depends on the evaluation of the
satisfiability of all its more general situations.

Example 4. In Figure 1, the satisfiability of a “meeting” situation m depends on that
of its constituent situations: the “meeting scheduled” situation c_m ; the “at work”
situation aw; the “in meeting area” situation l_m; and the computer being in the
“not intensively used” situation a_nu. Upwards, the satisfiability of c_m depends on
that of a more general situation c_i that the calendar records that a person is working
in her office, whose satisfaction depends on that of the top situation.

The top situation stores all the proper states of a system, and it holds if a system
is running properly. Therefore, the appropriateness of a system is the precondition of
the satisfaction of any basic situation. Corresponding to the top situation, the bottom
situation s⊥ stores all the improper states of a system, and it holds if there is anything
wrong with the system. Therefore, the bottom situation holds if inconsistent situa-
tions are detected. For example, s⊥ will be identified if two situations bw and m are
regarded occurring at the same time for the same person.

4.2. Maintaining Consistency and Integrity

Context-aware computing systems typically involve a large quantity of context,
based on which a number of situations can be created and specified. The question is:
how can situations be kept consistent and integral? Consistency means that logical
descriptions should be compatible between non-disjoint situations. Section 3.2 has
defined that a specific situation inherits the logical descriptions from its more general
situations. To maintain consistency the extended logical description of the specific
situation should not conflict with any description of its more general situations.

Example 5. In Figure 1, considering that the “meeting” situation m is one of the
more specific situations of the “at work” situation aw, it is impossible that the logical
description of m conflicts with that of aw.

Integrity means that non-conflicting context data cannot result in conflicting situ-
ations. A situation si is conflicting with another situation sj , if li ∧ lj = F , where F
is a contradiction. This requires that for any situation, the logical descriptions of its
immediately more specific situations should conflict with one another. Thus given the
correct context, there exists the unique most specific situation among all the identified
situations.

Example 6. Given non-conflicting context data, if the logical description of the “busy
working” situation bw is satisfied, then the description of the “coffee break” situation
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cb should not be satisfied. These two situations are conflicting, since their more gen-
eral situations a_iu and a_nu are conflicting. The descriptions of these two situations
are opposite. a_iu holds if the time gap between two continual readings is less than
30 seconds; while a_nu holds if the time gap between two continual readings is not
less than 30 seconds. Therefore, the conflicting situations bw and cb should not be
identified at the same time for the same person.

Consistency and integrity are the necessary conditions if a system aims to identify a
situation appropriately. Once the errors of inconsistency and non-integrity are detected
at runtime, the system designers will be forced to rewrite logical descriptions. This
repetitive checking and modification is expensive; therefore, it would be advantageous
if these problems could be spotted and avoided when creating situations. From the
top situation, each of its immediately more specific situations should not only satisfy
logical descriptions of the top situation, but also contain logical descriptions exclusive
from that of other siblings. This checking will be conducted recursively through the
whole process of construction. In Section 3.2, a new situation s is specified in a
logical description: l =

∧m
i=1 li ∧ l∗, where li is the logical description of one of its

immediately more general situations si. If l is evaluated to be false, then there is a part
of l∗ conflicting with li, which implies that s breaks the consistency requirement. The
integrity will be checked by comparing l with any logical description lj of its sibling
situations that share the same immediately more general situations. The situation s
is considered as an acceptable situation if its extended logical description is different
from that of its siblings: l 6= lj . This procedure is described in Algorithm 1.

4.3. Identifying Situations

There are two ways of recognising a situation. Backward chaining starts with a
list of situations and works backward to see whether the available context supports
the requirements of any of the situations. Backward chaining is a typical mechanism
used in current context-aware computing systems. To identify a “meeting” situation,
a system will collect all the perceptible context, for example, scheduled events in the
calendar and a person’s location. If the context satisfies the logical descriptions of a
“meeting” situation, then it is identified. This backward chaining is useful only when
a situation to be determined is chosen beforehand.

In the situation lattice, the logical description is defined particularly for each sit-
uation, and increasingly inherited from its general situations. Backward chaining is
carried out by evaluating this incrementally formed logical description against the
given context.

In many real applications, where there are many possible situations, it is not always
practical to locate a situation beforehand. Thus, forward chaining should be used:
this starts with the acquired context and applies inference rules to arrive at a situation.
In this circumstance, faced with a large number of inference rules, it is infeasible to
find the rules that match a certain situation by systematically checking each rule. It is
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Algorithm 1 Create a situation create(S, l∗)
INPUT: a set S of disjoint situations; an extended logical description l∗

OUTPUT: a situation s being created; otherwise, return null
// check the consistency of the logical description between the input situations
l = true
for all si ∈ S do

// li is the corresponding logical description of a situation si

l = li ∧ l
if evaluate l to be false then

fail
end if

end for
// check the consistency between the extended logical description and the inherited
description
if evaluate l ∧ l∗ to be false then

fail
end if
// check the integrity
for all si ∈ S do

for all s′i: immediately more specific than si do
if l∗ is equal to the extended description of s′i then

fail
end if

end for
end for
return s

necessary to find out a way of reducing the computational load and locating a situation
efficiently. In the situation lattice, logical descriptions can be shared, which avoids
repetitive evaluation of situations. The forward chaining does not have the problem of
infinite loops in the situation lattices either.

The situation lattice will be suitable for the forward chaining. A system starts by
identifying basic situations from the given set of context. Only the logical description
l∗ particular to a situation will be checked, rather than its complete logical descrip-
tion. If the description is satisfied, the satisfied context will be removed from the
original given context set and the chaining will continue checking its more specific
situations. In this way, only the minimum descriptions will be evaluated every time
without repetition, and the given context set is reduced continually. This will reduce
the computation load and improve the efficiency. Algorithm 2 describes the process
of forward chaining that will end up with a set of situations all of which are identi-
fied. Further, another procedure, refine, will locate a set of the most specific situations
{si, . . . , sk} among the returned situations. If this refined set is a singleton, then the
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target situation is the single situation; otherwise, the target situation is the join of all
these situations.

Algorithm 2 forward(s, C, S)
INPUT: a situation s being evaluated; an input context set C; a set S including all
the qualified situations.
OUTPUT: a set of qualified situations
if S.contain(s) = false then

// evaluate the extended logical description l∗ of s against C
if eval(l∗, C) = true then

S.add(s)
// reconfigure C by removing the context data satisfied by l∗

C ′ = reconfig(l∗, C)
for all si: the immediately more specific situation than s do

if si 6= s⊥ then
forward(si, C

′, S)
end if

end for
end if

end if

5. Situation Lattices and Uncertainties

When dealing with real-world data, there is no guarantee that situations will be
identified with complete certainty. Data can be imperfect, for example, due to sensor
failure, noise, delays, disconnected sensor networks, or infrequent update in response
to changes (Henricksen et al., 2004). Context is considered uncertain, if it is

– incomplete, when some information is unknown or missing. There may not be
enough evidence to determine the correct situation;

– imprecise, when the resolution of the context cannot satisfy the requirement of
applications. A more specific situation may not be able to be located;

– conflicting, when there are several inconsistent pieces of information from dif-
ferent sources, which may result in multiple disjoint situations being determined;

– incorrect or meaningless, when the information is erroneous compared to the
actual state or reality, which may result in an incorrect situation being determined;

– and out-of-date when the information is stale and is not updated in response to
changes, which may result in an incorrect situation being determined.

Many of these uncertainties are amplified when using inference rules to reason
about context, as well as the typical insensitivity of rules to noisy inputs. Another
concern is the difficulty in defining and maintaining accurate inference rules. These
uncertainties can result in incomplete, inconsistent, and incorrect situations being
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identified. In the following, we will propose two approaches to resolve uncertainty
in the situation lattice.

5.1. Coarse-Grained Approach to Resolving Uncertainty

A coarse-grained approach is introduced to resolve uncertainties with respect to
the characteristics of a lattice. Compared to a specific situation, a general situation has
fewer or looser requirements (or conditions). The general situation can be constrained
to more specific situations by

– adding requirements in its logical description (e.g., the “at work” situation aw
can be considered as being defined by adding the location requirement – the “on cam-
pus” situation l_u to the “in office” situation c_i);

– tightening the constraints (e.g., the computer being “intensively used” situation
a_iu is extended from the computer being “used” situation a_u with the constraints
on the frequency of receiving the readings from the activity sensor);

– or uniting with other situations (e.g., the “busy working” situation bw is defined
by composing the “not intensively used” situation a_iu, the “in office” location situa-
tion l_o, aw and the “nothing scheduled” calendar situation c_noentry).

If some context is too incomplete or too imprecise to support a given situation then this
situation cannot be identified. However, its more general situations will be checked
upward the situation lattice until a certain situation is identified, whose logical de-
scriptions are satisfied by the context. Therefore, when a system fails to recognise a
specific situation, it can loosen the requirement to locate a more general one.

If the input context is contradictory, then conflicting situations will be generated.
Each of these situations satisfies a part of the given context. It is difficult for the lattice
to determine which part of the context is proper if there is no clue about the reliability
of each piece of the context. As a result, the join of these situations will be returned
to resolve the inconsistent uncertainty.

The system is kept stable using the coarse-grained approach because it always
tends to choose the inviolable situation, even though this is not always the most ap-
propriate situation. In the pathological case, when all of the derived disjoint situations
are conflicting, the join of them is the most general situation s>. That implies the
system does not detect any situation and will not take any particular behaviour, so it
is considered insensitive to situations or context. However, among the disjoint situa-
tions, if uncertainties of context were incorporated into the lattice, it might be appro-
priate to select the situation with the highest degree of confidence. The system should
then carry out the behaviours specified for that situation. This responsive system is
more suitable for real-world applications. Consequently, we propose a fine-grained
approach to quantify the confidence of generated situations, which helps to determine
the situation that is most likely to occur.
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5.2. Fine-grained Approach to Resolving Uncertainty

The typical fine-grained approach attempts to quantify the uncertainties underly-
ing situations using probabilities. These probabilities attempt to capture the uncer-
tainty caused by imperfect context and error-prone deriving mechanisms. The situ-
ation lattice represents the dependence relationship between situations, so a promis-
ing approach is to represent the probabilities on both situations and dependence rela-
tionships and then reason on them with these probabilities. Bayesian Networks have
a causal semantics that encode the strength of causal relationships with probabili-
ties (Heckerman, 1996).

Bayesian networks are usually used to calculate the probabilities for decision mak-
ing under uncertainty. A Bayesian network is a directed acyclic graph in which each
node represents a variable that can be discrete or continuous, and each arc is the causal
relationship between nodes. If there is an arc from a node A to another node B, then
A is called a parent of B, implying that the variable B is regarded as depending di-
rectly on A. If a node does not have a parent, then it is called root. Each root node
is associated with an a priori probability. Each non-root node is associated with a
conditional probability distribution (CPD). If the variables are discrete, then the CPD
is represented with a conditional probability table given all possible combinations of
their parent nodes: p(x | parent(x)), where parent(x) is a parent set of a node x.

It is obvious that a situation lattice has a very similar structure to a Bayesian net-
work. The lattice can be converted to a Bayesian network in a straightforward manner:
each node in a Bayesian network corresponds to a situation, and each arc to a depen-
dence edge. In this Bayesian network, the root nodes are considered basic situations
that are immediately under the top situation s>. After building the graphical model
of Bayesian network, we will assess the prior probability for each root node and the
conditional probability for each non-root node. The Bayesian probability of an event
is a degree of belief in this event (Heckerman, 1996) and it can be obtained from the
domain expert or observations.

Considering the uncertainty and dynamism, the probabilities will be evaluated
by training a set of real data. For the probability of a root node, a simple but
straightforward approach is p(ω) = N ′

N , where N ′ is the times that a certain state ω
takes place and is recognised, and N is the total number of observations. To simplify
the computation, it is assumed that the structure of the model is known and the full
observations are possible, so the maximum likelihood estimate is applied for the
conditional probability distribution (Murphy, 1998). For each non-root node s, one
of its discrete states is written as ω, its parent nodes are s1, . . . , sn, and one of its
conditional probability is calculated as follows:

p(s = ω | s1 = ω1, . . . , sn = ωn) =
N(s = ω, s1 = ω1, . . . , sn = ωn)

N(s1 = ω1, . . . , sn = ωn)
,

where N(s = ω, s1 = ω1, . . . , sn = ωn) is the number of times that s is recognised
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in one of its states ω, and all of its parents are in one of its own states ωi; and N(s1 =
ω1, . . . , sn = ωn) is the number that all of its parents are in one of its own states ωi.

Bayesian inference is the process of updating the probabilities based on the rela-
tionships in the model and the recent evidence. The new observation is applied to
the model by assigning a variable to a state that is recognised from the observation.
Then the probabilities of all the other variables that are connected to this variable will
be updated. The new probability is called posterior probability that reflects the new
levels of belief.

Under the conditional independence assumption, the joint probability distribution
is applied to compute the probability of the resultant situations given the causal situa-
tions: p(si = ω) =

∏n
k=1 p(sk | parent(sk)).

With Bayesian networks, a system will not only return a more general situation
through the above coarse-grained approach, but it will also return a specific situation
with the highest possibility. If the highest possibility is beyond the threshold that is
specified by a system, the behaviours corresponding to that situation will be carried
out.

5.3. Demonstration and Evaluation

To demonstrate this work, we have gathered context data from three sensors that
capture the movements of a research student over a period of five working days.
Over the same period, the student kept a diary of her on-campus behaviour, captur-
ing whether she was working, in meetings, or on coffee breaks. The entries in the
student’s diary record her activities like this: “working at my desk from 09:36:30 to
10:03:55 On 23rd Oct 2007” 1. The situation lattice in Figure 1 was used to order
the situations. We then use a Bayesian approach to handle uncertainties in the map-
pings between contexts and situations in this Lattice. Conditional probabilities, which
capture uncertainties are learned using the diary data as a ground truth. The situation
lattice is then tested using held-back diary data to evaluate the approach and show
that it was capable of learning the appropriate mapping between raw contexts and
application-usable situations. For the purposes of demonstration, we will show how
the conditional probabilities were calculated for the “busy working” situation, which
captures whether the user was sitting at their desk working.

As introduced in Section 3.3, the “busy working” situation is informed by the
“intensively used”, “in office”, and “nothing scheduled” contexts. It is also informed
by the “at work” situation in the lattice. The “busy working” situation cannot be true
if the “at work” situation is not also true. In this sense the “busy working” situation is
indirectly dependent on the “on campus” and “scheduled in office” contexts, but for

1. The sample data are published online here: http://kind.ucd.ie/~juanye/datasets/
Ria2008Dataset.zip.

http://kind.ucd.ie/~juanye/datasets/Ria2008Dataset.zip
http://kind.ucd.ie/~juanye/datasets/Ria2008Dataset.zip
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the purposes of this demonstration we will assume that the mapping between these
contexts and “at work” situation have already been learned.

Each of the three contexts that inform “busy working” have associated uncertain-
ties that must be learned. The “in office” context is generated from a Ubisense installa-
tion. Ubisense does not always provide accurate location data, due to its own technical
limitations including the install environment, the battery level of tags, and the sample
frequency (Coyle et al., 2007). For example, if a Ubisense tag is located in the en-
vironment where there is interference (which is the case around our test user’s desk),
then its accuracy will be decreased. The “intensively used” situation is informed by an
activity sensor that indicates the level of activity recorded at a computer by a logged-in
user (it monitors the time of the last keystroke). If the last keystroke was recent (in
the last 30 seconds) then the “intensively used” context will be true, otherwise it will
be false. The “nothing scheduled” context is informed from an sensor that detects the
presence (and type) of events scheduled in a person’s online calendar. If there is no
entry scheduled, this context will be false. Uncertainty from this sensor comes from
the fact that meetings are often rescheduled, do not occur on time, or are not explicitly
scheduled in a calendar. One issue for this context in our dataset is that not many
meetings were scheduled — so this context has limited predictive power.

We calculate the conditional probabilities for the “busy working” situation using
maximum likelihood estimation. We sample ground truths for the “busy working” sit-
uation from the diary at thirty second intervals and use the available context at those
times to calculate the conditional probabilities. The conditional probabilities calcu-
lated on the whole dataset are shown in Table 1. The conditional probability column
also contains the number of times this context combination occurs in the dataset (i.e.,
at no time in the dataset is the “intensively used” true when both the “nothing sched-
uled” and “in office” contexts are false). The probabilities of identifying the “busy
working” situation tend to be higher if there is support from multiple sensors, for
example, if all three contexts support the “busy working” situation the conditional
probability is 0.99.

nothing scheduled in office intensively used probability(busy working)
false false false 0.0 (94)
false false true 0.0 (0)
false true false 0.87 (23)
false true true 0.97 (64)
true false false 0.14 (431)
true false true 0.99 (241)
true true false 0.88 (1000)
true true true 0.99 (1367)

Table 1. The conditional probabilities of the “busy working” situation. The total
number of times each context combination occurs is in brackets.
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We use the same approach to learn the conditional probabilities for each situation
in the lattice. In order to test the accuracy of the situation lattice we divide the dataset
into training and test data: we use the training data to calculate conditional probabil-
ities and test data to evaluate the approach’s accuracy. We use cross validation when
producing our evaluation, using four days to calculate conditional probabilities, and
use the data from the fifth day as a test fold to calculate the accuracy. Table 2 shows the
results for each of the five test days. For example, the probability 0.91 is the Bayesian
network’s accuracy in predicting the “busy working” situation correctly with the fifth
day (using the data from the first, second, third, and fourth days as training data).
Using this dataset, we can see that the overall accuracy for the situation lattice is 0.91.

Day 1 2 3 4 5
busy working 1.0 (397) 1.0 (609) 1.0 (291) 1.0 (683) 0.91 (596)
coffee break 0.92 (66) 0.86 (88) 0.84 (57) 0.70 (99) 0.93 (89)
meeting 0.0 (0) 0.0 (0) 0.0 (0) 0.96 (91) 0.88 (8)
Overall 0.99 (463) 0.98 (697) 0.97 (348) 0.96 (873) 0.91 (693)

Table 2. The probabilities of correctly identifying each of the situations in the cross
validation tests. The number of times each situation actually occurs in in brackets.

This dataset is used as a proof of concept for learning the conditional probabili-
ties of the situation lattice, but it has quite a few limitations — there is no data for
meetings on three of the days, and there is very little data for coffee breaks, which
include lunch (only one day has more than an hour of data for this situation). The vast
majority of data tested is of a single situation — “busy working”, which leads to a bias
in favour of that situation and probably skews the overall accuracy upwards. Since the
lattice presented here only contains three situations, the training and testing ignores
any other situation that occurs in the diary. The diary records just over 15 minutes of
these miscellaneous situations per day (these situations include travelling to the printer
and visiting other desks). Our next steps will involve gathering a larger dataset, cov-
ering more days, with additional situations, which will include these miscellaneous
situations, as well as new situations, covering specific types of meetings, lectures, and
an out-of-office situation. We expect this additional complexity to reduce the accu-
racies presented here and force us to make changes in the lattice structure presented
here.

6. Conclusion and Future Work

As reasoning with situations becomes more popular, system designers tend to spec-
ify a large number of rules to identify various situations in an ad hoc way. An efficient
approach is needed to organise and manage these situations so that their logical de-
scriptions maintain the consistency and integrity requirements. This paper applies a
formal structure using lattice theory to organise situations.
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The situation lattice reflects the specialisation relation of situations and captures
the dependence between situations. We believe that it will be helpful when main-
taining the consistency and integrity of situations, however, the involved computation
may be huge when faced with a large number (for example, hundreds or thousands)
of situations. This paper only presents a simple situation lattice with a limited number
of situations, while we will attempt to improve the algorithm to make the checking
procedure scalable and efficient. The situation lattice will also be beneficial when
identifying the situations using forward chaining approaches. However, the situation
lattice only reflects the static structures of situations. We have discussed the dynamic
evolution between context changes and situation transitions with a fibration theory in
our earlier work (Dobson et al., 2006). In the future, we will investigate how situation
lattices and fibration can be made to work together.

In dealing with the issue of uncertainty, the situation lattice supports a coarse-
grained approach and a fine-grained approach. The structure of the situation lattice
has a natural association with the Bayes’ Principle, which makes it amenable to the
uncertainty resolving techniques such as Bayesian Networks or Hidden Markov Mod-
els (Rabiner, 1990). This paper demonstrates how the situation lattice works with
Bayesian networks, and shows preliminary results that demonstrate that Bayesian net-
works can accurately identify a single situation from a small set of possibilities.

Bayesian networks work well if the context sources are relatively fixed, situations
are limited to a small number, and the structure of Bayesian networks is known a
priori. However, this assumption is contradictory to the nature of context-aware com-
puting systems. For the acquisition of context, context-aware systems should watch
all the potential context in the environment. This is a big issue when applying these
systems in reality, and potentially not solvable at the current research stage. In these
environments, new context sources often enter and leave. This frequent churn in con-
text sources will quickly render the original Bayesian network useless and require the
system to frequently retrain itself. If there are a large number of nodes in the Bayesian
network, the cost of training will be prohibitive.

The promise of using Bayesian networks with situation lattices is that they could
be used to learn the underlying structure of situations, which would make it pos-
sible to reconfigure the situation lattice. If learning the structure of nodes is re-
quired, the NP-hard problem underlying the Bayesian network will become an ob-
stacle (Charniak, 1991). Considering the above disadvantages, we will design the
algorithms to optimise the performance of Bayesian networks based on the particular
characteristics of context-aware computing systems. One solution may be to explore
the use of more knowledge about the environment (e.g., using a location model Ye et
al. (2007), an activity model Wren et al. (2007), or social network information Bot-
tazzi et al. (2007)), which may be used to learn the structure of Bayesian network
and provide prior probabilities. This may help to decrease the amount of training data
required.

To move towards the real situations, we will apply our approach to a larger dataset
that is gathered in our environment and a third party dataset (that is, the PlaceLab
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dataset (?) that comprised of a set of common household activities over a period of
time). These larger datasets will require the size of a situation lattice to be hundreds
or thousands, which will increase the complexity of training a Bayesian network, pre-
dicting situations and constructing a situation lattice.

When there are a large number of situations involved, it is infeasible to build a situ-
ation lattice manually. To decrease the complexity of construction, we will attempt to
design a tool that encapsulate and automate the following three processes: generating
a situation lattice from the initial input by developers; converting it to a Bayesian net-
work; and training it with initial sample data to arrive at an applicable situation lattice.
This tool will be expected to ease the procedure of constructing a situation lattice for
developers.

The authors would like to thank the anonymous Revue d’Intelligence Artificielle
reviewers for their constructive and detailed comments. Thanks also to all the mem-
bers in Systems Research Group of UCD, especially Graham Williamson, Mikoláš
Janota, Radu Grigore, Stephen Knox, Adrian K. Clear, and Ross Shannon.
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