
Journal of Ambient Intelligence and Smart Environments 0 (2010) 1 1
IOS Press

Exploring Semantics in Activity Recognition
Using Context Lattices
Juan Ye ∗ and Simon Dobson
School of Computer Science, University of St Andrews, St Andrews, Fife, UK, KY16 9SX.
E-mail: {ye, sd}@cs.st-andrews.ac.uk.

Abstract. Studying human activities has significant implication in human beneficial applications such as personal healthcare.
This research has been facilitated by the development of sensor technologies in pervasive computing with a large quantity of
observational data collected about environments and user actions. By mining these data, traditional machine learning techniques
have made great progress in recognising activities, but due to the increasing number of sensors and complexity of activities,
they are subject to feasibility and scalability. These techniques may benefit from the inclusion of semantic information about
the nature and relationships of sensor data and activities being observed. We introduce a new data structure, the context lattice,
which allows designers to capture and explore this sort of knowledge. We demonstrate how context lattices can be used to infer
human activities with the inclusion of such knowledge. We present comprehensive evaluations of the system against two third-
party smart-home data sets, and demonstrate that our approach compares favourably with traditional analytic techniques in many
circumstances. We conclude with a discussion of the strengths and weaknesses of context lattices in activity recognition.
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1. Introduction

Human activity recognition has gained increased at-
tention in recent years with the development of in-
home pervasive computing technologies, including
small and highly portable sensors that can be attached
to the body and to everyday objects [1,2]. The deploy-
ment of these technologies has brought about new op-
portunities for studying human activities. Also the in-
crease in the amount and variety of sensors fosters the
richer semantics underlying them; for example, loca-
tion data with varying levels of abstraction (such as
coordinates or symbolic places) can be acquired from
different sensors. This sort of semantics needs to be
expressed and used in the process of activity recogni-
tion.

Researchers have applied classic machine learning
techniques in the area of activity recognition. These
techniques are sophisticated themselves, and are able
to achieve good performance, while they exhibit a lim-
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ited capability in using the domain knowledge and se-
mantics underlying sensor data in their learning pro-
cess. This drawback might make them consume a large
amount of training data to build their structures or es-
timate parameters [3].

This paper will propose a new data structure, called
a context lattice, to recognise human activities in a
smart home environment. It is towards a formal model
to represent and exploit semantics in pervasive com-
puting. It allows expressing low-level semantics under-
lying environmental knowledge and sensor data and
as well as deriving high-level semantics on situations;
e.g., which situations a user cannot be involved at the
same time. In this paper, situations are human every-
day activities in a smart home environment, such as
preparing a meal or watching TV. The low-level se-
mantics will facilitate learning correlations between
sensor data and situations, while the high-level seman-
tics will help to guide situation-aware application de-
sign.

In earlier work we showed how context lattices
could be used as a tool for understanding in-office hu-
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man activities, such as “in a meeting”, “busy working
at desk”, or “coffee break” [4]. The context lattice was
manually constructed by organising abstracted sensor
data from positioning sensors, online calendars, and
users’ computer activity sensors, and labelling them
with the pre-defined activities. The preliminary evalu-
ation results were promising in expressing semantics
and inferring activities. To ease the use of context lat-
tices, we proposed a new approach that supports auto-
matically generating context lattices and learning rela-
tionships between sensor data and activities [5]. This
approach has performed well in a more complicated
data set where a larger number of sensors are involved
and relationships between sensor data and activities are
less explicit. This paper extends previous work, tests
the general applicability of context lattices in the area
of activity recognition, and conducts comparative eval-
uations on two independent public real-world data sets.

This paper is organised as follows. Section 2 reviews
the techniques that are widely used in the area of ac-
tivity recognition and introduces the qualitative com-
parison between context lattices and the existing tech-
niques. Section 3 describes the theoretical framework
of context lattices. Section 4 introduces the data sets
used for evaluation: the PlaceLab [6] and TK26M [7]
data sets, and highlights their applicability for testing
new approaches for human activity identification. Sec-
tion 5 illustrates how a context lattice is constructed
from scratch taking the PlaceLab data set as a main
example. Section 6 introduces the activity recognition
technique in a context lattice, and describes the exper-
iments conducted on the context lattices built in Sec-
tion 5, followed by a comparative analysis on the per-
formances of context lattices. Section 7 discusses the
knowledge extraction from a context lattice, including
the human activity pattern, sensor performance, and
relationships between situations. Based on our experi-
ence, we discuss the strength and limitation of context
lattices in terms of theoretical contribution and practi-
cal usage in Section 8. Section 9 ends with a summary
of our current work and suggests the future research
direction.

2. Related Work

There are two types of approaches in the area of sit-
uation identification or activity recognition: rule-based
[3,8,9,10,11], and learning-based approaches [4,6,12,
13,14,15,16,17].

2.1. Rule-based Approaches

A rule-based approach uses expert knowledge to de-
fine situations in logic statements. Earlier attempts fo-
cus on defining situations, including the work of Dey
et al [18], Henricksen et al [10], and Wang et al [19].
They took the initiative in considering situations as the
abstraction of sensor data that would be more influ-
ential on applications. They have worked on how to
define situations in simple logical formulas using the
pure expert knowledge. This work has been advanced
by Loke [9], Costa et al [20], and Yao et al [11].

Loke [9] presents a declarative approach to repre-
senting and reasoning with situations at a high level of
abstraction. A situation is characterised by imposing
constraints on the output or readings returned by sen-
sors. These constraints are represented as a logic pro-
gram. This approach is based on the logical program-
ming language LogicCAP that embeds situation pro-
grams in Prolog, which provides a high level of pro-
gramming and reasoning with situations for the devel-
opers. The logical theory makes it amenable to for-
mal analysis, and decouples the inference procedures
of reasoning about context and situations from the ac-
quisition procedure of sensor readings. This modular-
ity and separation of concerns facilitate the develop-
ment of context-aware systems.

Yau et al [11] and Costa et al [20] elaborate the natu-
ral characteristics of situations, including the relation-
ship between context and situations, the composition
of situations, and the temporal characteristics of sit-
uations. Yau et al [21] work on a composite defini-
tion of situations; that is, a definition of one situation
can be composed of definitions of others. They also in-
troduce time constraints in their definitions, including
time stamp and interval, which are useful in studying
the temporal sequence between situations. They have
developed situation ontologies to facilitate the use of
these formal representations.

Instead of dealing with individual situations, Thom-
son et al [3] provide a reusable library of situation
definitions that helps to automatically determine situ-
ations. They express different levels of granularity of
a situation through definition inheritance. Definitions
for new situations are created as variations of existing
ones so that the same situation can be interpreted at
different levels of abstraction.

2.2. Learning-based Approaches

With learning-based approaches, developers apply
off-the-shelf machine learning techniques, including
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decision trees [14,6], Bayesian inference [22,23,4,24],
Hidden Markov Models (HMMs) [25,26,27,16,17],
and Conditional Random Fields (CRFs) [28,7]. All
these works have presented good results on learning
human activities from a limited number of advanced
sensors (mostly on-body motion sensors). The follow-
ing will briefly introduce the applications of these tech-
niques in the area of activity recognition.

Bao et al [14,29] use decision trees to learn user
body motions (such as bicycling, shaking hands, or
typing) from the raw sensor data provided by accel-
erators on the human body. Van Kasteren et al [23]
carry out activity recognition using a Bayesian frame-
work. They use a static Bayesian model to learn the
relationship between different sensor data and human
activities, and also use a dynamic Bayesian network to
model the temporal aspects of activities. Bui et al [22]
use a multi-layer Bayesian dynamic structure, called
an Abstract HMM, to track an object and predict its fu-
ture trajectory in a wide-area environment. This struc-
ture is used to explicitly encode the complex and scal-
able spatial layout; i.e., the hierarchy of connected spa-
tial locations. Trained with coordinate-based location
data, it can predict the evolution of the object’s trajec-
tory at different levels of detail.

Minnen et al [27] and Wojek et al [16] used a
layered HMM representation to infer office activi-
ties such as giving a presentation or making a phone
call from the low-level sensor data including audio
and video sensors and on-body motion sensors. Mo-
dayil et al [30] use interleaved HMMs to recognise
multi-tasked activities where a person switches fre-
quently between steps of different activities such as
making a stir-fry, making a jello, and drinking a glass
of water. The interleaved HMM records the last object
observed from wrist-worn RFID sensors for each ac-
tivity as a hidden state.

Liao et al [28] employ CRFs to construct models
of high-level activities such as work, leisure, and visit.
They use a person’s GPS data to learn his activities
over a few weeks, and then determine the relationship
between the activities and places that are important to
this person.

2.3. Summary

In summary, rule-based approaches are good at ex-
pressing knowledge, while their performance is under-
mined by the features of data in pervasive computing
environment such as the complexity of knowledge and
high uncertainty of sensor data. Since the knowledge

can be about sensors, an environment (e.g., a space
map), or users (e.g., a social network or tasks), de-
velopers must consider all of this and then be able to
provide good definitions of situations. Also these ap-
proaches do not have a capability to resist noisy sensor
data without the help of other techniques.

Learning-based approaches are good at automati-
cally recognising activities, and resolving uncertainty
of sensor data, while it is difficult to incorporate do-
main knowledge in their learning process and extract
more advanced knowledge from them like high-level
semantics on situations.

A context lattice takes the advantages of both rule-
and learning-based approaches, and compensates for
their deficiencies. It uses a semi-learning method in
that it allows experts to express their knowledge about
local domains as low-level semantics, such as the char-
acteristic values of sensor readings and spatial relation-
ships between locations. It enables to integrate pieces
of the knowledge on sensor data, users, and environ-
ments, and learn the correlations between sensor data
and activities; that is, what sensor data contributes to
recognising an activity. The underlying assumption is
that experts have more accurate knowledge on these lo-
cal domains than their knowledge on correlating parts
of local views. Therefore, a context lattice will result
in less bias and subjectivity in utilising expert knowl-
edge. Based on such low-level semantics, it can learn
the correlations automatically through a training pro-
cess and derive high-level semantics. The learned cor-
relations enable it to resolve uncertainty to a certain
degree.

3. Theoretical Work

Taking inspiration from lattice theory [31], we de-
fine a context lattice, to study the relationship between
situations and context predicates that are characteristic
functions on sensor data. A context lattice is made up
of a set of nodes, each of which represents a logical ex-
pression and has a set of situations. A logical expres-
sion takes context predicates as input and applies log-
ical operators on the predicates. A node is activated if
its logical expression is satisfied by the current sensor
data. The semantics of each node is that when a node
is activated, any situation in its situation set can occur.
Alternatively, any situation that is outside this situation
set cannot possibly occur.

Figure 1 presents a simplified context lattice. There
are two types of nodes in a context lattice: prelimi-
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Fig. 1. A simplified context lattice. Except for the top and bottom nodes, other nodes are labelled with their logical expressions. Nodes in white
are preliminary nodes while nodes in grey are compound nodes. No situations have been associated with the nodes in this context lattice yet.

nary nodes, whose logical expression is a single con-
text predicate (e.g., inLivingRoom); and compound
nodes, whose logical description is on a combina-
tion of context predicates (e.g., remoteContro-
lAccessed ∧ inLivingRoom). Nodes are organ-
ised with the specialisation relationship. A node is
considered more specific (�) than another node, if and
only if the logical expression on the former node en-
tails that on the latter node. The semantics of the spe-
cialisation relationship is that a node will be activated
if and only if all its more general nodes are activated.
The formal definition of a context lattice is given as
follows.

Definition 1. A context lattice is defined as a join
semi-lattice L = (N,�), where N is a set of nodes
and � is the partial order between the nodes.

– ∀n ∈ N , n has a logical expression denoted as
n.l, and n corresponds to a set of situations de-
noted as n.S.

– ni � nj ∈ N iff ni.l � nj .l, where � is the
logical entailment relationship.

– ∀ni, nj ∈ N , there exists the unique node nk ∈
N , ni � nk and nj � nk such that given any
n� ∈ N , ni � n� and nj � n�, nk � n�.

The specialisation relationship between the nodes
also uncovers a partial order on their situation sets. The
activation of a node is the necessary condition that its
more specific nodes will be activated. Thus it is im-
possible that situations that cannot occur on this node
will occur on its more specific nodes. This result is for-
malised in Lemma 2.

Lemma 2. If ni � nj ∈ N , then ni.S ⊆ nj .S.

We specify a few assumptions on these nodes, which
are given as follows:

– Assumption (A): there exists a unique top node n�
whose logical expression is a tautology TRUE. n�
corresponds to all situations. Its semantics is that
if no sensor reading is available, then any situa-
tion is possible to occur;

– Assumption (B): there exists a unique bottom
node n⊥ whose logical expression is a contradic-
tion FALSE. n⊥ corresponds to an empty set of
situations. Its semantics is that if sensor readings
are conflicting, then no situation can be correctly
derived;

– Assumption (C): no two nodes share the same log-
ical expression.

A context lattice is a join semi-lattice. For any two
nodes, there exists a join node that contains the great-
est logical expression that is entailed by any logical ex-
pression on these nodes. For example, the node in-
LivingRoom is the join of the node remoteCon-
trolAccessed ∧ inLivingRoom and the node
elecCurrentInLivingRoomOff ∧ inLivin-
gRoom. The situation set on their join is the least su-
perset of the union of their situation sets.

There does not necessarily exist a meet for any two
non-conflicting nodes. If there exists a meet for a set of
nodes, the logical expression on the meet contains the
least logical expression that entails any logical expres-
sion on these nodes. For example, the node remote-
ControlAccessed∧ inLivingRoom is the meet
of the node remoteControlAccessed and the
node inLivingRoom. The situation set on their meet
is the greatest subset of the intersection of their situa-
tion sets.
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Fig. 2. Semantic relationships between context predicates [32]

Within a context lattice, we can express the low-
level semantics through relationships between context
predicates: various levels of granularity, conflicting,
and overlapping (as seen in Figure 2). One context
predicate is finer-grained than another if any sensor
data that satisfies the former context predicate also
satisfies the latter one. For example in Figure 2(a),
the context predicate inLivingRoom is finer grained
than the predicate inHouse, since the living room
is contained in the house. According to Definition 1,
various abstraction levels between two context pred-
icates are represented as a specialisation relationship
between two preliminary nodes that host these context
predicates respectively.

Two context predicates are conflicting if any sen-
sor data that satisfies one of them cannot satisfy the
other. For example in Figure 2(b), the context pred-
icate inLivingRoom is conflicting with the pred-
icate inBedRoom, since they are spatially disjoint.
The meet can be used to express a conflicting rela-
tionship. If two nodes host conflicting context predi-
cates, then their conjunction is FALSE. According to
Assumptions (B) and (C), there exists a unique node
n⊥ whose logical predicate is FALSE, so the meet of
the two nodes is n⊥. This conflicting relationship is
formalised in the following lemma.

Lemma 3. ni � nj = n⊥, iff ni.l ∧ nj .l = FALSE.

Once the conflict relationship is defined between
two preliminary nodes, it will be “inherited” by their
more specific nodes. That is, if two nodes ni and nj

are conflicting, then any of their more specific nodes n�i
and n�j will conflict with each other (see Corollary 4).
This will be used to avoid inconsistency (no compound
nodes are created from conflicting nodes) during the
process of automatically generating a context lattice.

Corollary 4. If ni � nj = n⊥, then ∀n�i � ni and
∀n�j � nj , n�i � n�j = n⊥.

Two context predicates are overlapping if they can
be satisfied at the same time by certain sensor data,
but there exists sensor data that satisfies one of them
but not the other. For example in Figure 2(c), the con-
text predicate inLivingRoom overlaps with another
predicate inDiningRoom, since they share a com-
mon location - the foyer. If two context predicates are
overlapping, the more specific node under their corre-
sponding nodes is the node with their overlapped logi-
cal expression; e.g., inFoyer.

This section shows that a context lattice is built on
basic concepts of lattice theory. With its structural fea-
tures, a context lattice can express these typical se-
mantic relationships of context predicates. More de-
tails on the theorectical work of the context lattice can
be found in [4,5].

In the literature of applied Lattice theory, it has
been used in the formal data analysis, knowledge rep-
resentation, and information management [33,34,35].
A concept lattice is designed to organise formal con-
cepts, each of which is constitued by its extension (i.e.,
a collection of objects belonging to a concept) and in-
tension (i.e., a collection of attributes common to all
those objects). The concept order is based on a coupled
extensional and intensional relation. In a context lat-
tice, a node can be considered as a concept, where its
logical expression can be regarded as an intension of
the concept and its situation set as an extension of the
concept. The difference is that the context lattice uses
a lighter theoretical foundation of Lattice theory, and
puts more emphasis on learning and reasoning on the
association between the logical expressions and situa-
tions.

4. Data sets in Smart Home Environments

To test the general applicability of the context lat-
tice, we demonstrate its feasibility and evaluate its per-
formance in activity recognition on two independent
real-world data sets – the PlaceLab [6] and the TK26M
data set [7].

4.1. PlaceLab Data set

The PlaceLab is an instrumented home that contains
over nine hundred sensors. The PlaceLab data set 1

1The data set can be downloaded at: http://web.media.
mit.edu/~intille/data/PLCouple1/.
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(also known as PLCouple1) was gathered over a period
of 15 days that a married couple (who were unaffili-
ated with the PlaceLab research) lived in the PlaceLab.
During this period, they were encouraged to maintain
their life routine as normally as possible. The Place-
Lab was instrumented with the audio-visual recording
infrastructure that was used to record activities of the
subjects except for private activities (such as bathing).
The video was annotated by a third party, which pro-
vided a ground truth representing the activities that
were taking place over the period of study. So far, only
the activities of the male subject have been annotated.

The diary shows that most activities annotated were
occurring between the hours of 17 and 24. The human
activities include “using phone”, “using a computer”,
“reading”, “eating”, “meal preparation”, “watching
TV”, “dishwashing”, “hygiene”, and “grooming”. The
occurrences of these activities vary greatly; for exam-
ple, “using computer” occurs for 20.14 hours, which
covers 42.9% of the data set, while “dishwashing” oc-
curs only for 9.83 minutes, covering 0.35%.

Besides the sensor data and ground truth, the Place-
Lab data set contains a location map of the home and
a sensor metadata file 2, which records the meta infor-
mation about each sensor input, including its type, its
identity (ID), where it is installed, and which object it
is attached to; e.g., the couch in the living room. The
technical specification of the sensors was published
making it possible to interpret the raw sensor data. A
data set visualiser was also made available, called Han-
dLense, which we used to observe the behaviour of
sensors in the environment and define critical output
values for sensors by examining the sensor readings
for each sensor ID in the sensor output files.

Our experiment covers most sensors in the Place-
Lab data set, which includes wireless infra-red motion
sensors, “stick-on” object motion sensors, switch sen-
sors, RFID, and electrical current, water, and gas flow
sensors. We do not use environmental sensors (like
the sensors to detect temperature, humidity, and baro-
metric pressure) since they do not have a direct ef-
fect on human behaviours that we intend to detect in
this paper. This data set includes the on-body 3-axis
motion sensors that provide the acceleration data of
the subject’s movement. If there existed a diary about
fine-grained activities that recorded the specific move-
ment of the subjects, such as walking, sitting, mov-

2The sensor metadata file can be downloaded at: http:
//web.media.mit.edu/~intille/data/PLCouple1/
PLObjects_oct23.xml

ing the arm, or lifting an object, it would be possible
for us to train the sensor data to identify these fine-
grained behaviours using supervised machine learning
techniques [29]. However, since the PlaceLab data set
only provides a diary that records higher level activi-
ties, such as “grooming” or “watching TV”, we cannot
define movement predicates from these accelerometers
(and also training the body motion sensors is not in the
scope of our work). Thus, we do not use these sensors
in our experiments.

4.2. TK26M Data set

The TK26M data set was gathered by researchers in
the intelligent autonomous systems at the University of
Amsterdam [7]. It was built on ordinary activities over
28 days in a house where a 26-year-old man lived. The
house consists of five rooms, in which are installed 14
state-change sensors on the doors, microwave, fridge,
freezer, washing machine, or cupboards. When a sen-
sor was fired, it was recorded in the data set. The ac-
tivities were annotated by the participant through a
Bluetooth headset in real-time. They include “leave
house”, “use toilet”, “take shower”, “go to bed”, “pre-
pare breakfast”, “prepare dinner”, and “get drink”.

5. Construction of a Context Lattice

A context lattice is constructed through the follow-
ing processes: (1) defining primitive nodes from con-
text predicates that are characteristic functions on raw
sensor data; (2) creating compound nodes based on
low-level semantics between context predicates; (3)
associating situations with each node in the context lat-
tice through a training process. The Java API has been
implemented to allow developers to construct a con-
text lattice easily. The following section demonstrates
the construction process from scratch with the use of
the Placelab data set.

5.1. Defining Context Predicates

To create a context lattice, context predicates should
be abstracted from sensor data and then preliminary
nodes will be generated from each single context pred-
icate. A context predicate is defined with a set of sen-
sor IDs and a constraint on readings of these sensors.
A context predicate holds if its constraint is satisfied
by a reading from any of these sensors.
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From the PlaceLab data set we classify the sensor
IDs according to the types of sensors, and define con-
text predicates for each sensor ID. Mappings from raw
sensor output to context predicates are defined based
on the sensor’s technical specification and observation
of sensor behaviour. For example, a context predicate
doorInBedroomOpen is defined as true when the
switch sensor on the bedroom door produces readings
0 or 200 as per the technical specification. The sample
code is shown as follows. The lines 1-3 create an atom
formula that consists of a sensor type “SWITCH”, a
sensor ID “2F00000022B46D12Y”, and a characteris-
tic function on its reading “%200 == 0”. The lines 4-6
define a context predicate with a descriptive name and
the atom formula.

1. Formula af = new AtomFormula
2. ("SWITCH", "2F00000022B46D12Y",
3. "%200 == 0"));
4. ContextPredicate cp = new
5. ContextPredicateImp("doorInBedroomOpen",
6. af);

Another predicate inLivingRoom is defined as
being true when the sensor reading for the infra-red
motion sensor in that room is no less than 5, based
on observations using the PlaceLab visualiser – Han-
dLense. Using the same approach, context predicates
are defined for the electrical current, water, and gas
flow sensors. Since sensors in each type share the same
characteristic function (e.g., the above formula on a
switch sensor), developers only need to define a char-
acteristic function for each type of sensors, and write a
script to parse the PlaceLab sensor metadata file so as
to automatically generate context predicates for each
sensor.

The time context predicates are also defined since
the activities are potentially time-related; e.g., the sub-
ject usually gets dressed or undressed (both of which
are defined as ”grooming”) when he arrives home and
before he goes to bed. The time predicates are de-
fined as hourly segments between the hours of 17:00
and 24:00, e.g., 17-18 or 23-24. TimeFormula is
used to create and evaluate temporal related formulas.
In the following example, a context predicate 17-18
is defined on a time formula that evaluates whether the
input time’s hour is 17.

1. Formula tf = new TimeFormula
2. ("hour", "== 17"));
3. ContextPredicate cp = new
4. ContextPredicateImp("17-18", af);

Certain objects in the PlaceLab have multiple sen-
sors relating to their use; e.g., a mobile object might
have both RFID and object motion sensors associated
with it. When this occurs, we combine their outputs di-
rectly by linking all sensor readings from a single ob-
ject to a single predicate. For example, an object ac-
cess predicate laptopAccessed is defined on the
laptop that has two sensors associated to it: its RFID
sensor "E00700001E226FEE" and its motion sensor
"956". The predicate holds if either sensor gives an ac-
tive reading. The following sample code shows that a
context predicate can be defined on a disjunction of
atom formulas, which implies that if either the RFID
tag is read or the object motion sensor is fired, then
laptopAccessed holds.

1. LogicConnection<Formula> afs
2. = new Disjunction<AtomFormula>();
3. afs.add(new AtomFormula("RFID",
4. "E00700001E226FEE", ""));
5. afs.add(new AtomFormula("OM",
6. "956", ">= 0"));
7. ContextPredicate cp = new
8. ContextPredicateImp("laptopAccessed",
9. afs);

When it comes to more complex sensors, machine
learning techniques can be used to define context pred-
icates in that a context lattice does not support learning
characteristic values on numeric sensor data. For ex-
ample, if a machine learning technique extracts a char-
acteristic function on sensor data from wearable ac-
celerators, then body motion predicates like stand or
walk can be defined.

As mentioned in Section 3, developers can apply do-
main knowledge to define the low-level semantics. The
domain knowledge can be about an environment such
as a space map as shown in Figure 2. In the Place-
Lab environment, the location predicates conflict with
each other, since each of them represents an individual
room and the subject cannot be in two different rooms
at the same time. Relationships between predicates can
also be evaluated from their characteristic functions;
e.g., the predicates lightInLivingRoomOn and
lightInLivingRoomOff cannot hold at the same
time since they have exclusive range of active readings.
The relationships between the context predicates can
be specified by the developers (e.g., the location pred-
icates) or evaluated quantifiably (e.g., the light predi-
cates). More details have been discussed in [36].

So far the preliminary nodes have been defined on
different types of sensor data. To complete a context
lattice, these preliminary nodes are needed to be com-
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Fig. 3. The automation process to generate compound nodes.

bined iteratively, which will be described in the follow-
ing section.

5.2. Combining Context Predicates

A context lattice will be automatically completed by
generating compound nodes from preliminary nodes,
level by level, until all the non-conflicting nodes are
combined. At the current stage, a logical expression on
a compound node is implemented as a conjunction of
context predicates. Its creation process is described as
follows. Given two nodes ni and nj , their compound
node (labelled as ni ⊗ nj) can be

1. the bottom node, if they conflict, which is evalu-
ated by using Lemma 3;

2. or a new node nij = ni ⊗ nj with

– nij .l = ni.l ∧ nj .l;
– nij � ni and nij � nj .

As shown in Figure 3, if all non-conflicting nodes
were combined, the complexity of generating a con-
text lattice would be O(2N ), where N is the number
of preliminary nodes. This complexity would give rise
to a massive scalability problem, which keeps a con-
text lattice from being meet complete. A practical solu-
tion is to combine nodes if their predicates are not con-
flicting and closely related to each other. The underly-
ing assumption is that the context (or the sensor data)
closely related to the surrounding of the subject will
have a major effect on inferring his current situations.
This context lattice has been configured to combine
context predicates if the sensors they refer to are static
and physically located in the same location. For exam-
ple, the node elecCurrentInLivingRoomOn is

combined with the node lightInLivingRoomOn,
while it will not be combined with the node elec-
CurrentInOfficeOn. This solution is reasonable
if activities do not transcend the boundaries of a single
location; e.g., the subject cannot be cooking in both the
kitchen and bedroom.

Seven location predicates have been defined for each
individual room, one for each room in the PlaceLab,
and seven time predicates, one for each hour in the data
set. All the sensors are divided into two groups: the
sensors that are statically located in one of the seven lo-
cations; and the sensors attached to mobile objects that
are independent of location. Static sensor predicates
cannot be combined with static sensor predicates from
other locations but mobile object access predicates
(e.g., laptopAccessed) can be combined with any
other sensor predicates. The classification is done with
the use of the sensor metadata file; that is, each con-
text predicate is grouped according to its correspond-
ing sensor’s location recorded in the sensor metadata
file.

For each location, the generation algorithm auto-
matically creates compound nodes by combining the
non-conflicting time, location, and object access pred-
icates. For example in the living room, there are four
current predicates with two pairs of conflicting pred-
icates. With these current predicates, there will be 8
compound nodes created. In the living room, 624 com-
pound nodes are generated from the combination of
these 8 compound current nodes, 7 time predicates,
and 8 object access predicates (8∗7+7∗8+8∗8+8∗7∗
8). In the end, the completed context lattice has 27649
nodes in total: 1 top node, 1 bottom node, 113 prelim-
inary nodes and 27534 compound nodes. This context
lattice is easier for a system to manage, compared to a
fully generated lattice with about 2113 nodes.

5.3. Labelling Nodes with Situations

sensor values: v1, v2, ..., vn

1. activate preliminary and 

compound nodes

occurring situations: s1, s2, ..., sm

2. increment the number of 

times that it is activated

3. update occurrences of situations on each 

activated node: occurrences1++, occurrences2++, ..., 

occurrencessm++;lattice

at each time increment:

Fig. 4. A process of training a context lattice [5].
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In order to link activities to context predicates in
a context lattice we execute a training algorithm that
consists of three steps, which are illustrated in Fig-
ure 4. Training data are passed into the raw context lat-
tice, one time increment at a time, whose frequency de-
pends on the data set; e.g., 10 seconds for the PlaceLab
data set. At each time increment, the context lattice is
fed with a set of sensor values v1, v2, ..., vn and a set
of activities s1, s2, ..., sm, which are occurring at that
time. The training process activates the preliminary
nodes by evaluating their context predicates against the
sensor values. The context lattice applies the meet op-
erator on the activated preliminary nodes to activate
their compound nodes. For each activated node, a vari-
able is updated, which indicates how many times its
logical expression has been satisfied. The number of
times that each of the occurring activities occurs on the
activated node will be incremented.

At the end of the training process, each node will
record (1) the number of times that it has been acti-
vated; and (2) a situation occurrence array, containing
the number of times each activity occurred on this node
when it has been activated. Each entry in the situation
occurrence array is normalised by being divided with
the total number of times that activity occurs in the
training data. The normalised value implies the prob-
ability that an activity is occurring when this node is
active; if it is zero this activity is impossible to occur.

If a node’s occurrence is zero or its situation set is
empty, then this node is considered ineffective and will
be removed from the context lattice. We synchronise
all the annotated sensor data and diary data into 10-
second gaps, which covers all the annotated 40 hours
out of the total 104 hours’ data in the PlaceLab data set.
Two thirds of these synchronised instances are used
to train the context lattice built in the above section.
After training and pruning off ineffective nodes, the
size of the context lattice decreases to 13035 nodes,
which is close to half of the initial size. This means
the training process can filter quite a few meaningless
combinations of predicates.

6. Activity Recognition

When a context lattice is built and completed, it is
ready to be used to recognise human activities. The
structure of a context lattice makes forward chaining
algorithms more efficient by evaluating all the predi-
cates just once. When fed with a set of sensor readings,
the system starts by evaluating the predicates on all the

preliminary nodes from the top. Activity recognition is
a procedure of applying the meet operator on all the
activated preliminary nodes. Since the context lattice
is not meet-complete as stated in Section 5, the proce-
dure may end up with a set of nodes (called resultant
nodes) which are most specific among all the activated
nodes, rather than a unique node.

Instead of inferring a single activity, a context lattice
will return the following two sets of situations where
each situation is provided with its occurrence ratio: (1)
a set of possible-to-occur situations that is the union of
the situations in these resultant nodes, which indicates
that the situations outside this set are impossible to oc-
cur; and (2) a set of most-likely-to-occur situations that
is the intersection of the situations in these resultant
nodes, which indicates that these situations are agreed
by all the sensor data.

For example, if a context lattice ends up with two
resultant nodes whose situation sets are {“using com-
puter”, “reading”} and {“watching TV”, “reading”}
respectively, then the activities possible to occur are in
{“watching TV”, “using computer”, “reading”}, and
the activities most likely to occur are in {“reading”}.

most-likely-to-occur situations

possible-to-occur 

situations

impossible-to-occur 

situations

possible-but-not-most-

likely-to-occur situations

corresponding applications 

should be triggered 

corresponding applications can 

be triggered 

corresponding applications 

should not be triggered
all situations

Fig. 5. Relationships between applications and inferred situations.

The inference result of a context lattice provides the
accurate and detailed information about what is occur-
ring in the real world. This will help application devel-
opers to design a more robust and customised system
compared to the techniques mentioned in Section 2.
Figure 5 presents the relationship between recognised
activities and confidence of carrying out correspond-
ing applications. Applications (or services) related to
the most-likely-to-occur situations will be provided
with a high confidence, while applications whose cor-
responding situations are not contained in the possible-
to-occur situations should never be triggered. Appli-
cations related to the situations that are possible but
not most likely to occur are not suggested to be trig-
gered, but they can be triggered with the consideration
of other design requirements.
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6.1. Evaluation Methodology

The activity recognition will be evaluated on both
the PlaceLab and TK26M data sets. The evaluation pa-
rameters are precision and recall. Precision is the ra-
tio of the times that a situation is correctly inferred to
the times that it is inferred in most-likely-to-occur sit-
uation sets. Recall is the ratio of the times that a situ-
ation is correctly inferred in possible-to-occur sets to
the times that it occurs.

When measuring recall, it is possible to achieve
100% recall under certain circumstances. If there is
significant conflict between sensor data, the most-
likely-to-occur situation set could be empty, and the
possible-to-occur situation set could contain every sit-
uation. This leads to 0% precision and 100% recall,
which suggests that all the situations are equally pos-
sible to occur, but none of them is most likely to occur.
This makes both the possible-to-occur and the most-
likely-to-occur situation sets insensitive to sensor data.

To avoid this insensitivity, thresholds are set on oc-
currence ratio of each situation to refine situations
in the most-likely-to-occur and the possible-to-occur
sets. The thresholds are determined with the standard
maximum likelihood estimation; i.e., a threshold is
chosen if it produces the highest F-measurement that
is a standard measurement weighting precision and

recall equally: F =
2× precision× recall

precision + recall
. It will

be used to measure the overall accuracy in the fol-
lowing section. When the conflict is detected in the
activated nodes, the most-likely-to-occur situation set
will contain the situations with the highest probability,
which excludes the possibility of 100% precision. The
possible-to-occur situation set will filter out the situa-
tions whose occurrence ratio is below its correspond-
ing threshold, which decreases the possibility of 100%
recall but does not exclude it. Therefore, to test the ex-
istence of insensitivity the chance that a possible-to-
occur situation set covers all the situations will be cal-
culated.

We choose thresholds by using the maximum likeli-
hood estimation, where the threshold is tuned to pro-
vide the best inference result. For each situation, we
set in initial threshold and a scale to reduce the thresh-
old to 0. For each situation, we calculate the precision
and recall for each threshold. In the edn, for each situ-
ation, we will choose the inference result that achieves
its highest precision and recall.

The performance of the context lattice is evalu-
ated using stratified 10-fold cross validation, which

is considered standard in the machine learning com-
munity [37]. Three types of experiments will be con-
ducted on the context lattices. First of all, we will test
the existence of insensitivity of context lattices, and
measure their precision and recall. The precision and
recall will be compared to the results obtained from
default configured J48 decision tree and Naive Bayes
using the Weka software package [37]. The reasons
that we choose them are that (1) they are off-the-shelf
machine learning techniques, and that (2) they achieve
better classification results on the PlaceLab data set
than the other techniques [6]. These experiments will
show that the accuracy of a context lattice in activ-
ity recognition is comparable with traditional machine
learning techniques. We will conduct a second exper-
iment to demonstrate that domain knowledge can be
easily utilised in a context lattice and can be used to
improve the learning process. The recognition accu-
racy will be evidently increased compared to the result
in the first experiment. Our third experiment will eval-
uate the effect of the amount of training data on the
inference result.

6.2. Experiments on the PlaceLab and TK26M Data
Sets

The context lattice built on the PlaceLab data set
is evaluated using the 13870 synchronised sensor and
diary instances. There are 250 (1.8%) times that the
possible-to-occur situation sets cover all the activities.
It is shown that there only exists a very small chance
that the possible-to-occur situation sets are insensitive.

Figure 6 and Figure 7 present the comparison of
precision and recall of activity recognition between
J48 decision tree, Naive Bayes, and the context lat-
tice. From Figure 7, the context lattice produces the
highest recall on most of the activities (except for “hy-
giene”), since the possible-to-occur situations contain
all the possible activities that are above the threshold.
It shows that the possible-to-occur situation set is good
at capturing the activities that are possible to occur.
This set will make applications more robust. In terms
of the precision, it has a relatively lower performance
of the precision of recognising activities on the Place-
Lab data set.

The context lattice built from the TK26M data set
is evaluated using the 796 synchronised sensor and
diary instances, which are obtained in the same way
as we did on the PlaceLab data set. Since no activi-
ties co-occur in this data set, the most-likely-to-occur
situation set only infers one activity every time. Dur-
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Fig. 6. Comparison of precision of inference using the PlaceLab data
set between J48 decision tree, Naive Bayes, and context lattice.
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Fig. 7. Comparison of recall of inference using the PlaceLab data set
between J48 decision tree, Naive Bayes, and context lattice.

ing this evaluation, the possible-to-occur situation set
never covers all the activities; that is, the insensitivity
never occurs.

Figure 8 and Figure 9 show the comparisons of
precision and recall between J48 decision tree, Naive
Bayes, and the context lattice on the TK26M data set.
It is shown that the context lattice has better perfor-
mance than the other two techniques.
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Fig. 8. Comparisons of precision using the TK26M data set between
J48 decision tree, Naive Bayes, and context lattice.

6.3. Domain Knowledge

Figure 10 presents an overall accuracy on the Place-
Lab and TK26M data sets between J48 decision tree,
Naive Bayes, and the context lattices, which is mea-
sured in F-measurement. It shows that context lattices
work less effectively on the PlaceLab data set than on
the TK26M data set. To better understand the perfor-
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Fig. 9. Comparisons of recall using the TK26M data set between J48
decision tree, Naive Bayes, and context lattice.
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Fig. 10. Comparison of the averaged F-measurements between con-
text lattices, J48 decision tree, and Naive Bayes on the PlaceLab and
TK26M data sets

mance of context lattices, we analyse the characteris-
tics of activities that are inferred in low precision on
the PlaceLab data set.

The precision of inferring an activity will be low
if this activity can co-occur with any other activity or
it does not have an explicit pattern detectable from
existing sensors. For example, “using phone” can oc-
cur with any other activity at any time in any room
as shown in Figure 6; and “get drink” frequently co-
occurs with “prepare breakfast” and “prepare dinner”
as shown in Figure 8. Since this activity cannot be
identified or distinguished from other activity without
the help of other characterised sensor data, it is co-
inferred frequently with others, which results in low
precision.

This case cannot be dealt within a context lattice,
unless a new sensor effective in identifying the activ-
ities is introduced. The PlaceLab data set involves the
on-body motion sensors to sense the acceleration of the
movement of the male subject’s thigh and wrist. These
sensors might be useful in distinguishing some activi-
ties such as “eating” and “reading” but would require
separate training to interpret the meaning of the raw
sensor data, as mentioned in Section 4.

The precision will be low if the sensors that are
supposed to identify this activity produce inaccurate



12 Ye and Dobson / Context Lattices

data or are accidently or incorrectly fired by other sub-
jects. For example, the activity “dishwashing” should
be identifiable if the positioning sensor can accurately
locate the male subject’s location (i.e., in the kitchen),
and the faucet in the kitchen can recognise that the
male subject is using it. As mentioned in [38,6], there
are two participants involved in the PlaceLab data col-
lection and most sensors except RFID are not user-
specific. Thus one subject could activate a sensor that
should not be fired when the other subject is participat-
ing an annotated activity.

This case can be resolved to a certain degree by
introducing further domain knowledge into the con-
text lattice. That is, we will enforce the relationship
between sensor data and activities, based on human
common-sense knowledge and understanding of sen-
sors. For example in an activity “dishwashing”, we
propose two assumptions:

– Assumption 1: it cannot occur in other locations
except the kitchen. Since “dishwashing” is an
activity that involves observable motions, if the
infra-red sensor senses a motion in another loca-
tion instead of the kitchen, then it is impossible
that the male subject is washing dishes. This as-
sumption would be more accurate if there is only
one participant living in the house. In the Placelab
data set there exists another participant, however,
these two participants often did things together in
the same location [6]. Thus, we consider this as-
sumption still reasonable.

– Assumption 2: if the water flow sensor does not
sense flowing water in the faucet in the kitchen,
then “dishwashing” cannot occur.

These two assumptions aim to improve precision
by filtering the sensor data to remove the cases where
“dishwashing” was incorrectly trained. The assump-
tions can be manually specified by developers in the
construction API, which restrict the possible situa-
tions on the corresponding preliminary nodes. That is,
developers simply add one statement to certain pre-
liminary nodes to enforce the occurrence of “dish-
washing” to be always zero in their situation arrays.
Thus, all these preliminary nodes are exclusive from
“dishwashing” in the training process. For Assump-
tion 1, all the preliminary nodes that associate with
location predicates other than inKitchen will be
enforced exclusive from “dishwashing”. For Assump-
tion 2, the preliminary node whose context predicate is
faucetInKitchenOff is enforced exclusive from
“dishwashing”. These restriction statements on the

preliminary nodes will be automatically “inherited” by
their more specific nodes with respect to Lemma 2.
A sample code is listed as follows. The preliminary
node handler adds an exclusive situation whose name
is “dishwashing” to a location predicate whose name is
inLivingRoom (lines 1-2) and to a water flow pred-
icate whose name is faucetInKitchenOff (lines
3-4).

1. PreNodeHandler.addExSitu(
2. "inLivingRoom","dishwashing");
3. preNodeHandler.addExSitu(
4. "faucetInKitchenOff","dishwashing");

Besides the situation “dishwashing”, we will also
deal with the situation “grooming”. This situation
could involve some miscellaneous like “brushing or
styling hair”, so we will only apply a simple assump-
tion:

– Assumption 3: it cannot occur in the kitchen, or
the office.

After adding these relationships to the original con-
text lattice, we re-evaluate it in the 10-fold cross vali-
dation using the same data set. Figure 11 presents the
comparison of the F-measurements between the origi-
nal and improved context lattices. The F-measurement
of “dishwashing” has been greatly increased, which is
even better than J48 decision tree and Naive Bayes.
The F-measurement of “grooming” has been increased,
but not as much as that of “dishwashing”, since
“grooming” is less specific. For example, a “groom-
ing” activity “brushing or styling hair” can occur any-
where at any time, which breaks Assumption 3.

The introduced assumption does not cause an ap-
parent change in the inference result on the other ac-
tivities. The overall precision has only been increased
slightly, mostly because these two activities occur
much less frequently compared to all the other activi-
ties.

The above example has demonstrated that applying
a small amount of domain knowledge in a context lat-
tice can greatly improve the accuracy of inference such
that the uncertainty of sensor data has been resolved to
a certain degree. In addition, the process of introducing
domain knowledge is simple, which adds statements
on the preliminary nodes for each assumption. A con-
text lattice is configured to facilitate both the expres-
sion and propagation of the knowledge as described in
Lemma 2 and Corollary 4 in Section 3.
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Fig. 11. Comparison of F-measurement between the original context lattice and the improved context lattice with domain knowledge.

6.4. Training Data

A context lattice needs to be trained with sensor and
diary data to learn the semantic relationships between
context predicates and situations. The following ex-
periments are conducted to evaluate how the amount
of training data will affect the precision and recall of
recognising activities. Given n days’ data, the exper-
iments will evaluate the precision and recall by using
the following amount of training data: 1 day, 2 days,
and until n−1 days. For each number of days m−1, we
choose each day’s data for testing and choose the pre-
vious m days data for training. If the previous m days
are unavailable, then the backward days’ data will be
chosen [7]. For example in the PlaceLab data set, for
using one day’s data for training, if the data on 2006-
08-23 (the first date) are used for testing, the data on
2006-09-18 (the last date) will be chosen for training.

Figure 12 and Figure 13 present the relationship be-
tween the averaged F-measurements on all the activi-
ties and the amount of training data on the PlaceLab
and TK26M data set.

The curves in both figures rise asymptotically,
which means that the context lattices are insensitive
to the amount of training data. Both figures show that
using one day’s data for training does not make much
difference from using more days’ data for training. Be-
yond a certain quantity the further addition of train-
ing data does not have a significant effect on the accu-
racy of inference. Figure 12 shows that using only half
day’s data for training and another half day’s data for
testing will reduce the performance, since the first half
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Fig. 12. Relationship of F-measurements and the amount of training
data using the PlaceLab data set.
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Fig. 13. Relationship of F-measurements and the amount of training
data using the TK26M data set.

day’s data might lack enough training data to cover the
activities that occur in the next half day.

The reason that a context lattice consumes a small
amount of training data is that it has provided a struc-
ture to organise context predicates, and the training
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process only needs to label activities on different com-
binations of predicates. As long as the training data
contain the correct mapping between activities and
sensor data, then a context lattice will be able to finish
the learning process. Training does not include the pro-
cess of building a new hierarchy, which is the reason
that makes most machine learning techniques (such as
decision tree and Naive Bayes) consume much training
data.

7. Knowledge Extraction

This section describes how to extract high-level se-
mantics by observing characterised sensor data on sit-
uations; that is, how sensors behave when a user is per-
forming a certain activity. This type of knowledge will
be helpful in accumulating experiences on choosing
sensors to build a future smart space, and providing
feedback on designing situation-aware applications.

7.1. Situation Specifications

A context lattice supports deriving a specification
for a situation. A situation’s specification is a logical
expression that takes context predicates as input and
applies logical operators (disjunction and conjunction)
on them. A situation is considered being conducted, if
its specification is satisfied by current sensor data.

Given a built context lattice with N nodes, there ex-
ists a set of the most specific nodes (except the bot-
tom node) Ns ⊆ N whose situation set contains a
certain situation s. The specification of this situation
s is generated by applying the logical operator OR on
the logical description of these nodes Ns. That is, a
specification of s is n1.l ∨ n2.l ∨ . . . ∨ nm.l, where
{n1, n2, . . . , nm} = Ns.

We derive specifications of situations from the con-
text lattice of the PlaceLab data set. Some of the situ-
ations have a relatively small number of nodes in that
they have a tractable activity pattern. For example of
the activity “hygiene”, its specification3 is listed as fol-
lows:

hygiene =(inPowderRoom ∧ 18-19
∧waterInPowderRoomOff
∧lightInPowderRoomOff
∧ nothingInPowderRoomAccessed)
∨(inBathroom ∧ 23-24

3The specifications presented in this section are re-organised by
authors for the sake of readability and space.

waterInBathroomOff ∧
lightInBathroomOn))

Some of the frequently-occurring activities are asso-
ciated with a large number of the most specific nodes.
For example, “using phone” has 245 most specific
nodes, since the subject could use phone anywhere at
any time. Part of its specification is listed as follows:

using phone =inLivingRoom ∧
((elecCurrentInLivingRoomOff∧
nothingInLivingRoomAccessed ∧
16-18) ∨ (lightInLivingRoomOn
∧ (((18-19 ∨ 20-21)
∧ remoteControlAccessed)
∨ (nothingInLivingRoomAccessed
∧ 18-20))))
. . .

By examining the specifications of the activities, de-
velopers can have an intuition on what sensors are
useful in recognising an activity. For the activity “hy-
giene”, the most effective sensor is a positioning sen-
sor that could detect the subject in the powder room or
the bathroom. Also the number of most specific nodes
on each situation can reflect the accuracy of its descrip-
tive definition; that is, a large number of nodes suggest
that either this situation occurs frequently (e.g. the situ-
ation “using a computer” has 395 most specific nodes,
and it occurs 42.9% of the time through the data set) or
this situation is less tractable. Under the latter circum-
stance, developers might need to refine its descriptive
definitions by removing trivial activities (like styling
hair) or split it into sub activities.

The specifications of the activities cannot only be
represented in the above logical rules, but also can
be visualised in a partial lattice that only includes all
the nodes associated with a certain situation. Since the
nodes have the specialisation relationship in the con-
text lattice, it might be easier for understanding and
diagnosing [39].

7.2. Semantics between Situations

Based on specifications of situations, we can explore
their semantic relationships: type-of and conflicting.
These two relationships can be inferred from the spec-
ifications of situations based on their correspondingly
most specific node sets. One situation si is a type of
another situation sj , if when a subject is conducting
si he is also considered conducting sj . It requires that
for any of the most specific nodes on si, there exists
at lease one most specific nodes on sj such that the
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node on si is more specific than the node on sj (as pre-
sented in Definition 5). Thus if a specification of si is
satisfied, then the specification of sj will be satisfied
as well.

Definition 5. si is a type of sj , iff ∀nk ∈ Nsi , ∃n�k ∈
Nsj , nk � n�k.

One situation si conflicts with another situation sj ,
if it is impossible for a subject to be in both situations
at the same time. It requires that any of the most spe-
cific nodes associated with si conflicts with any of the
most specific nodes associated with sj (as presented in
Definition 6).

Definition 6. si conflicts with sj , if ∀nk ∈ Nsi , nl ∈
Nsj , nk � nl = n⊥.

If two situations share some of the same most spe-
cific nodes, then they are likely to occur at the same
time when any of these nodes are activated. How-
ever, this leads to another question: if one of these
nodes is activated, it is possible that the user is in
both situations occur, or the user is one of them
not the other. For example in the PlaceLab data set,
“watching TV” and “eating” can share the same most
specific node, whose context predicates are 19-20
∧ inLivingRoom ∧ elecCurrentInLivin-
gRoomOn∧ nothingInLivingRoomAccessed.
When this node is activated, the subject can be “watch-
ing TV” and “eating” simultaneously, or he can be ei-
ther “watching TV” or “eating”. This issue is related
to the discernability of sensors in precisely identifying
situations, which has been covered in more details in
[5].

We apply the above two definitions on the context
lattice of the PlaceLab data set. There are no special-
isation relationships between the activities. Since the
location predicates on each individual rooms conflict
with each other, the activities that occur in different
rooms should conflict, such as “dishwashing” and “hy-
giene”. Due to the imprecision of the positioning sen-
sors, the activities that should be conflicting are not
inferred as conflicting; for example, “watching TV”
should conflict with “meal preparation”.

8. Discussion

This section discusses the strength and limitation of
context lattices and propose potential improvements
on them from the perspectives of theoretical work and
practical usage.

8.1. Capability in Expressing Logic

Theoretically, a context lattice should be able to sup-
port any logical formula as long as the specialisation
relationships exist between the nodes. Due to the scal-
ability issue of the lattice and the complexity of im-
plementation, we only support conjunction and dis-
junction in the logical expressions at the current stage.
However, each context predicate can implicitly involve
universal or existential quantification and implication;
for example, a location predicate inLivingRoom
would be, if translated in logic, ∃ sensor

(sensor.id = "2088" AND sensor.reading > 0
-> inLivingRoom = TRUE) .

The API is provided to define simple predicates,
to generate a conjunction of these predicates on com-
pound nodes, and to derive situation specifications us-
ing a logical disjunction between these conjuncted
predicates. To represent complicated knowledge (espe-
cially temporal logic [40]), the capability of express-
ing logic in context lattices is far insufficient. In the
future, we will extend API with logical programming
and temporal reasoning [41] to support representing
and evaluating more complicated logical expressions.

8.2. Capability in Inference and Uncertainty
Resolving

Figure 10 shows that the context lattice performs
better in the TK26M data set than in the PlaceLab data
set. By examining and comparing the two data sets, we
find that (1) the activities recorded in PlaceLab diary
cover much more activities and some of them barely
have an identifiable pattern (e.g., “using phone” given
that there is no effective sensors on the phone), while
the activities recorded in the TK26M diary are mostly
identifiable immediately from the sensors; and (2) the
PlaceLab data set involves external noise in the data
set, since it has involved two participants and most sen-
sors are not person-specific.

These two causes are critical for context lattices,
since the way that context lattices are created is to
combine the relevant sensor data. This only captures
a local snapshot of the reality, while other techniques
like the decision tree and Naive Bayes start with all
the sensor data and capture a universal snapshot of the
reality. This universal combination might be useful in
recognising activities from sensor data with more un-
certainty, if the other local views can serve as an ev-
idence supporting or complementing the current local
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snapshot. However, the scalability issue of a context
lattice keeps it from building a universal combination,
which makes it perform not as well as the other two
techniques.

When activities have identifiable patterns from
available sensors, context lattices have presented better
accuracy than the other techniques. The reason is that
context lattices are defined and constructed using ex-
pert knowledge, so the learning process will be respon-
sible for “adding” relationships between sensor data
and situations. To resolve uncertainty of sensor data to
a certain degree, developers can simply introduce well-
known domain knowledge into a context lattice, which
will potentially increase the accuracy. In contrast to the
machine learning techniques, context lattices can ef-
fectively integrate domain knowledge and sensor data,
which results in low demand on the amount of training
data and high accuracy in inferring.

When it comes to resolving uncertainty, currently
we used the naive training techniques, as no intelli-
gent techniques or major result in lattice theory have
been applied. This makes a context lattice less resistant
to noise of sensor data, which result in worse perfor-
mance in recognising situations than classic machine
learning techniques, even though they do not need ex-
tra knowledge from developers while the context lat-
tice is built with expert knowledge.

Some work has been done in uncertainty reason-
ing by applying possibility theory to lattice-valued
logic [42,43]. We are investigating different uncer-
tainty resolving techniques in the context lattice, such
as Bayesian network [4] and Fuzzy logic [36]. Since
the preliminary results are promising, we will work
on configuring the context lattice with these different
techniques and conduct a more comprehensive evalua-
tion to find out which technique best suits which type
of uncertainty.

8.3. Knowledge Engineering Effort

The strength of a context lattice is to allow de-
velopers to express and use domain knowledge. Us-
ing the basic structural feature of a lattice, developers
can represent the semantic relationships between con-
text predicates and restrictions of situations on context
predicates (i.e., what situations cannot occur on con-
text predicates) can be represented.

When there are a large number of preliminary nodes
(e.g., over hundreds), developers may need to define
the combination mechanism between types of context
predicates so as to reduce the complexity of the gen-

eration process. We have demonstrated how to group
and combine the nodes on the PlaceLab data set, which
is straightforward and manageable. To our best knowl-
edge, this data set is the most complicated among the
existing data sets, which covers the largest number of
sensors. Therefore, we expect the process will be much
simpler on other smaller data sets if applicable.

The context lattice allows developers to incorporate
domain knowledge to guide and restrict the learning
process. The result in Figure 11 has demonstrated that
the accuracy of inference can be greatly improved by
incorporating a small amount of domain knowledge,
which is intuitive and easy to specify. We agree that
the added knowledge is to solve particular uncertainty
issues in particular environments, but there is no huge
amount of knowledge engineering effort involved in
the process. The addition of the domain knowledge is
necessary only when there exists external noise in the
data set and the noise can be simply dealt with by con-
straining the relation between certain sensors and ac-
tivities. When the data set is relatively clean (e.g., the
TK26M data set), the developers do not need to add
any domain knowledge.

8.4. Scalability

A context lattice can scale well with the addition of
new situations, since it does not demand much training
data or effort in restructuring. To contain a new situa-
tion, developers only need the training data about the
new situation and the sensor data during its occurrence.
A context lattice will “label” it on the nodes that map
to these sensor data, without “reshaping” the structure
of a context lattice.

When an environment is introduced with a new sen-
sor, a few primitive nodes will be created based on
the values produced from this sensor. These new nodes
will be combined with the existing nodes in a context
lattice, while its original structure will not be changed.
Developers will need to train the new context lattice
with the sensor data (including the existing sensors and
new sensors) and newly recorded diary. However, the
more sensors involved, the more context predicates de-
fined, which will raise the scalability issue. To address
this problem, this paper demonstrates a means to de-
crease the complexity by grouping the predicates and
specifying their combination policy. This means intro-
duces subjectivity, which might affect the performance
of situation inference as discussed in Section 8.2.

It is suggested that if an environment involves a lim-
ited number of sensors (such as the TK26M data set),
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developers should define context predicates according
to sensor inputs and let context lattices to generate all
the combinations; if an environment involves a number
of different types of sensors (such as the Placelab data
set), developers should define context predicates in a
semantic way and add more knowledge in specifying
the combination policy.

9. Conclusion and Future Work

This paper describes a new data structure, context
lattices, to recognise activities in a smart home en-
vironment. The novelty of this structure is its ability
to represent and use low-level semantics on domain
knowledge and sensor data and to derive high-level se-
mantics on human activities. The low-level semantics
helps to uncover correlations between sensor data and
activities while the high-level semantics provide guid-
ance on situation-aware application design. The eval-
uation results in Section 6 have shown that a context
lattice can recognise activities at a comparable accu-
racy to traditional machine learning techniques while
consuming less training data.

As presented in Section 8, our future work will focus
on extending the theoretical model with the possibil-
ity theory such that context lattices will perform better
in dealing with noisy data. A context lattice suffers a
severe scalability issue, which keeps it from automati-
cally generating all the combinations of logical expres-
sions that involve the logical disjunction and negation.
In the future, we will look into the ways to resolve the
scalability issue such as [44,45].

The current API needs to be incorporated with log-
ical programming to support representing and evalu-
ating more complex logical formulas. In addition, the
API should be made more friendly to end developers
so as to facilitate the process of defining context pred-
icates and even visualise the lattice.
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