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Abstract— Pervasive computing introduces complex systems
consisting of many users, sensors, and applications that should
react to context data, provide services, and manipulate devices
in a predictable and reliable manner. Context data sensed from
the environment is largely uncertain due to lack of precision and
imperfect or faulty sensors. Uncertainty is generally dealt with
at the level of individual context data. Due to the difficulties
associated with catering for data of such fine granularity in ap-
plications, the environment can be divided into larger chunks of
context called situations. Situations, comprising of finer-grained
events in the form of context data, warrant a different approach
to dealing with uncertainty. Furthermore, we demonstrate that
the uncertainty threshold of an event that triggers a behaviour
is determined by the severity of the behaviour, making this task
non-trivial. In this paper we detail an approach to dealing with
uncertainty at the level of situations that takes into account the
severity of the behaviour that it is triggering.

I. INTRODUCTION

Uncertainty is a major issue in context-aware computing and
is largely due to the lack of precision and accuracy of sensors
interpreting the environment. It is a problem that cannot be
avoided because even as sensors become more accurate and
precise, full sensor coverage of an environment is not realistic.
As a result, we need to accept that we are dealing with
uncertain data and take measures to program with it or to
mitigate its effect where possible. Uncertain context can have
a major impact on the predictability of the overall system
behaviour when low-level events, such as changes in context,
are reacted to directly [2]. In particular this is a problem when
those events have no notion of a certainty metric associated
with them.

To deal with uncertainty in context data, Dobson et al. [1]
propose to maintain a knowledge-base of context data that can
attach a measure of its belief in the accuracy of the data. When
applications query for data, the result reflects these beliefs. An
inferencing engine returns a single value with an estimation of
its correctness using an aggregation function over three pieces
of data; precision, decay and confidence. Precision represents
the physical accuracy of the data; decay represents how time
affects the certainty of data; and confidence is a measure of
the system’s belief in the data.

This work is partially supported by Science Foundation Ireland under grant
number 05/RFP/CMS0062, "Towards a Semantics of Pervasive Computing.”

Adrian Clear is supported by an EMBARK Scholarship from the Irish
Research Council in Science, Engineering and Technology.

Simon Dobson
Systems Research Group
UCD Dublin, Ireland

The fine granularity of context data makes it difficult to use
at the application level. Applications respond to events that
are generally richer than a single sensor reading. They are
sensitive to user activities as opposed to single observations.
For example, the activity “Walking” is richer, and of more
use than, the location coordinate “39 54 32”. In the absence
of higher-level structures, applications must query for each
context that constitutes an event as opposed to a single
structure—events become implicit in application logic which
prevents them from being reused. The environment can be
divided into larger chunks called situations [9] to cater for
these events. Situations have two major advantages in the field
of context-aware computing. Firstly, situations are high-level
abstractions of collections of facts (context) about the system’s
environment. Their introduction relieves the burden of dealing
with aggregation of context in application logic and provides
a step towards the possibility of realistic user-programming of
context-aware systems. Furthermore, situations can be used as
stabilisers for the behaviour of the system whereby a small
change in context may be irrelevant at the situation level so
the behaviour of the system can remain the same [2]. With
the introduction of situations to context-aware computing, we
must review the measures in place for dealing with uncertainty
and adjust them for use in these higher-level structures.

Loke et al. [5] recognise that context-aware behaviours
are not uniform in the certainty levels that they require of
events that trigger them. This non-uniformity correlates to
the severity of the behaviours. We use the term severity to
illustrate the measure of a behaviours ability to be harmful
when exhibited in the wrong circumstance. It is trivial to take
severity into account when dealing with individual contexts as
events. Situations are composed of many events or individual
contexts, however. In order to cater for this characteristic
at the level of situations, we hypothesise that when higher-
level situation abstractions are used as events, not only do
behaviours have differing thresholds for their certainty, but
the individual contexts do not always have uniform importance
when arriving at the certainty measure.

As an example, consider the following applications in a
hallway: a lighting application and a door authorisation appli-
cation. The authorisation application will want to be certain
that the user it is authorising is actually located outside the
door. The certainty of location is very important as we do not
want to allow access to others in the hallway. Once an intruder



has entered, we cannot undo the behaviour. Alternatively,
certainty in location is not as crucial to the lighting application.
If people on room boundaries activate the light we can undo
it by turning the light off and learning about the precision
required. In this case it would perhaps be more desirable
to turn the light on than to leave the hallway in darkness.
Consequently, it becomes non-trivial to deal with uncertainty
while moving from a programming model that uses low-level
events to one that uses higher-level abstractions as events.

We wish to expand on the work by Dobson et al. by
representing the uncertainty of context with the three values:
precision, decay and confidence, and using this data at the
level of situations to attain a measure of uncertainty. In order
to satisfy our hypothesis, we wish to include a measure of
influence that each context has in a situation structure, and
make this highly customisable for applications. In this way,
application developers get more flexibility in designing the
triggers for adaptation. The system becomes more flexible
when the effects of a behaviour are mild, thus providing a
more useful service to the user.

We propose a more natural, fuzzy approach to dealing with
uncertainty that builds on previous work. We are attempting
to minimise the possibility of erratic behaviour in these
complex systems, in an attempt to make them predictable and
useful in their behavioural transformations, while minimising
the constraints that we put on them. We are moving away
from treating all context data with equal importance when
triggering behaviours so that we enforce more natural, flexible
constraints, while remaining cautious when it is necessary to
do so.

Section II describes some background for the paper along
with the related work in the field. Section III details the
approach that we are taking to deal with uncertainty at the
level of situations. We discuss the benefits and limitations of
our work, along with some comparisons to existing research,
in Section IV. Finally, in Section V, we give some conclusions
and describe some possible future directions.

II. BACKGROUND AND RELATED WORK

The Construct framework [8] is a context acquisition and
distribution framework that we use to deploy pervasive com-
puting applications. It consists of a number of distributed
nodes that accumulate context data from local sensors. Each
node has its own data store where context is represented as
RDF triples. The contents of the local data stores are dis-
tributed throughout the network. Applications access context
data by providing queries, written in SPARQL !, to a query
service component. We leverage the Construct framework
to bring about our approach to dealing with uncertainty in
situations.

Ontologies are used in the field of Pervasive Computing
as one approach to model context data so that it is computer
interpretable and can be communicated among heterogeneous
devices. They form a semantics for sensor data. The GAIA

Uhttp://www.w3.org/TR/rdf-spargl-query

project [7] is one example of the use of ontologies from the
Semantic Web domain to model context. The Web Ontology
Language (OWL) [6] is a language for defining and instan-
tiating data models. An OWL ontology includes descriptions
of classes and their related properties and instances. OWL
ontologies can be used to process and reason about the content
of information. They facilitate machine interpretability of data
by providing a formal semantics for it.

Uncertainty is also an acknowledged problem in the field of
pervasive computing. Hightower et al. [4] devised the Location
Stack, which is a layered software engineering model for
location in ubiquitous computing. One of the principles that
their model is based on is that uncertainty must be preserved—
uncertainty measurements at the sensor level should be pre-
served in order to provide correct uncertainty levels at higher
abstraction levels, which may be more closely tied to adapta-
tions. A given example is that an application routing telephone
calls to a handset near the intended recipient may take a
message if uncertainty about the user’s location is too high.
In their Location Stack, which is comprised of seven layers,
each suggesting a division of functionality, there exists a fusion
layer where location measurements are merged in an effort to
reduce uncertainty. Differing capabilities, redundancies, and
contradictions are exploited to achieve this. The paper also
suggests a contextual fusion layer in which location data is
merged with other types of context to produce situations.
From their design principles, this layer assumedly contains
measures to preserve uncertainty of sensor readings although
no suggestions are made. This layer is equivalent to the space
that we focus on in this paper.

Dobson et al. [1] suggest a means to dealing with uncer-
tainty based on the association of meta-data with context data.
Three values are used to determine its accuracy: precision, de-
cay and confidence. Precision represents the physical accuracy
of the data; decay represents how time affects the certainty
of data, and confidence is a measure of the system’s belief
in the data. Context, along with this meta-data, is entered
into a knowledge-base. For each reading, the uncertainty is
calculated by multiplying the three values, which are between
zero and one. When an application makes a query, if multiple
results are returned, each one must be voted for. Every sensor
reading returned gets a vote, the value of which is the product
above. If multiple readings are returned from the same sensor,
the votes are divided accordingly. The result returned to the
application is given a percentage of certainty calculated from
the total vote.

Loke et al. [5] recognise that taking actions only when there
is a high degree of certainty in context may be unnecessarily
cautious. Actions may be reversible and/or there may be
reasonable mitigation strategies for them. In these cases the
potential benefits of the actions may outweigh any potential
costs if the context is incorrect. The paper models a system
with rules that take into account action-specific thresholds for
uncertainty and severity in making a decision about exhibiting
an action. They introduce argumentation structures to represent
context as justifications and explanations for recognised situ-



ations and for taking actions. Using these structures they can
gain a quantitative measure of certainty of a perceived context.
They use arguments to support or oppose beliefs in context and
by summing the supporting and opposing arguments, they gain
a measure of certainty.

Henricksen et al. [3] developed their own context modelling
approach based on Object Role Modeling. In order to deal with
imperfect information, they added extensions to this context
modelling approach based on four different classes of context
information: sensed, static, profiled and derived. Each of these
may be prone to different types of imperfection. Context
can be unknown, when no information about it is available;
ambiguous, when several different reports are available; im-
precise, when a reported state is an inexact approximation of
the true state; or erroneous, when there is a mismatch between
actual and reported states. By incorporating different classes
into their context model, they can reason about issues like
uncertainty or conflict detection in a more fine-tuned manner.

III. UNCERTAINTY IN SITUATIONS

In preparation for dealing with uncertainty at the level of
situations, we first describe our approach to modelling the
system’s environment and contextual facts. For the purpose
of modelling, we make a clear distinction between a model
of the environment and a model of context. The environment
is a data model used to represent concepts that are relevant
to the system, and the relationships between those concepts.
A context is a fact, made machine interpretable, through the
use of this data model. We view the environment as any
concepts that may need to be processed by applications in
order to make the system context-aware. Thus the environment
consists of concepts such as location, time, and person. We use
ontologies then, written in the Web Ontology Language, in
order to express the meaning and semantics of these concepts
so that they may be processed and reasoned about.

A. Modelling Context

We view a context as a fact that is constructed using the
concepts in our model of the environment, data types such as
strings and integers, and relationships between concepts and
between concepts and data type values. These relationships are
also modelled in the above-mentioned ontologies as properties.
A context is structured as a graph represented in the form
of a triple, (subject, predicate, object), where the predicate
is a relationship between the subject and object—a directed,
labeled edge in the graph from the subject to the object.

We use the Resource Description Framework (RDF) 2 in
order to model contextual facts as triples. In RDEF, these triples
are known as statements. For the purpose of modelling context,
statements are an insufficient model—often extra information
is required to annotate context (e.g., the time that they were
added or the sensor that added them). In our case, to deal with
uncertainty, we need to annotate statements with three values:
precision, decay and confidence.

2http://www.w3.org/RDF
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Fig. 1. Context Model: Reification of contextual facts

We use what the World Wide Web Consortium (W3C)
refers to as reification * in order to annotate context. RDF
provides an in-built vocabulary for describing RDF statements.
A description of a statement using this vocabulary is called
a reification of the statement. Reification allows us to treat
an RDF statement as a resource and describe its subject,
predicate and object using statements about this resource.
It is also possible to introduce further statements about the
resource to annotate the statements. For example, the triple
(Adrian hasLocation Room00 .) could be described as
triplel and we could then state facts about triplel using
further statements such as (triplel wasEntered AtTime 13 :
32 .). We model context in RDF as a reification of a contextual
fact, with the addition of precision, decay and confidence
attributes. We can also associate time, sensor, etc. in this way.
In Figure 1, we associate a URI with a context (triple1234 in
the diagram), and as a result treat it as a resource. We can then
associate uncertainty values (precision, decay and confidence)
with it using statements about the triple.

Facts about the environment are interpreted from raw data
through sensors. Sensors construct RDF triples from this data
and use the ontological description of context to associate the
appropriate meta-data with them. The resulting triples are then
entered into a shared, distributed data store which is part of the
Construct framework. All of this information is then available
to applications through a query service interface.

3For more information regarding the RDF reification vocabulary, see
http://www.w3.org/TR/rdf-mt



B. Modelling situations

A situation is a set of constraints on contextual facts so
that when these constraints are satisfied in the sensed envi-
ronment, the situation is said to occur. We model constraints
on context as separate ontology classes. We model two types
of constraints using ontologies: intervals and ranges. Intervals
contain a max and min value so that we can query for
anything in between them. Ranges are a list of possible values
for contexts that cannot be represented numerically, such as
location. We recognise that these constraints alone are not rich
enough to design a context-aware system—they, along with
the use of ontologies to model them, are simply a proof of
concept. In future we will need more advanced relationships
for constraints such as “beside” or “close to”.

The severity of behaviours or actions in a context-aware
system is an important factor to take into account when dealing
with uncertainty. Behaviours can be thought of as a spectrum
with critical at one end and safe at the other. As a result,
whether a behaviour should be exhibited or not depends on
both the position of the behaviour in the spectrum, and the
confidence that the system has in the event that triggered the
behaviour.

Because each contextual fact is an event, there is a need
for something different when dealing with uncertainty in
situations. Our hypothesis is that context information, of which
a situation is comprised, may be of different importance * to
the situation, dependent on the behaviour. Our confidence in
the location of a person may be more important in a security
conscious application than one with few potential bad effects,
for example. We need to incorporate this into our model of
situations.

In our model of situations, each context constraint has
associated with it a relevance value to signify the certainty
requirement of that particular type of context to a situation.
A relevance value is a figure between O and 1, where O
indicates that the context must have a high certainty, and 1
indicates that its certainty is unimportant. A context constraint
also has a subject and predicate used for querying purposes.
The constraints represent values that should be returned when
querying with a given subject and object. In Figure 2, we can
see that an interval constraint has a min and max value along
with the subject and predicate used for querying. It also has
a relevance value to express how certain the system must be
in the context for a particular situation to occur.

A situation is composed of one or more context constraints,
and these are used for reasoning about whether the situation
is occurring or not. Each context-aware application, deployed
using the Construct framework, has an associated properties
file, which points to the situation instances that are relevant to
it. We have also designed a generic situation query service that

4We require a single measure of certainty for a situation. In order to arrive
at this value we must take the certainty of each individual context into account.
By importance of context to a situation, we mean that the nature of a behaviour
may enforce different requirements on the certainty level of contexts, thus
giving them different influences in arriving at a certainty measure for the
situation.
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Fig. 2. Context constraint model of an interval

takes a set situation instances and polls the local query service
to inspect whether the situation has been realised or not. In
order to reduce complexity of the middleware’s query service,
each application has its own situation query service. Once a
situation has been realised, it is noted in a situation cache,
along with its certainty measure. The application monitors the
cache and adapts its behaviour accordingly. The architecture
of our application can be seen in Figure 3.

In order to arrive at a measure for the situation’s certainty,
we have the following process: for each context constraint in
the situation, the contexts that support it are returned from the
local query service. In order to come up with a percentage
for the certainty of this context constraint, each context gets
a vote as in Dobson et al. [1]. Once we have a percentage
certainty for each context we apply a weighting scheme based
on the relevance values of the constraints. We multiply the
percentage by the relevance value and add the result to the
original percentage. For example, if we were 50% sure that
a context was correct, and it has an influence of 0.5 (semi-
important), we can boost its value up to 75%. We then take
the lowest value of all the percentages and assign this as our
certainty in the situation. An example can be seen in Figure 4
where even though the relevance value for location boosts its
value slightly, it still does not meet the strict threshold required
by the application.

Situations in this approach are closely tied to applications,
and it is the task of the application developer to set constraints
on context information that situations are comprised of. The
relevance values act as a weight on the certainty of a context
which may, as a result, increase or unalter its actual value, thus
changing the influence it has on the certainty of the situation.
We allow certainty of context to be fuzzy where appropriate
to increase the flexibility of the system. A threshold is defined
for the application, which the overall situation certainty must
equal or exceed, for a behaviour to be triggered.
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IV. DISCUSSION

In this section, we will discuss the limitations and benefits of
our approach, and compare it to existing work where possible.

A major concern for context modelling is reuse. Context
models are designed so that common concepts can be reused
by many applications, allowing them to communicate in the
same language. Models are decoupled from applications. With
the advent of situations into the field, an obvious approach is to
model them in the same manner. Situations then can be shared
among applications in the system and they can all react to the
same events. Although it is possible to set a threshold on their
uncertainty, we argue that treating all contexts with the same
importance in coming up with this value leads to an inflexible
system.

Moreover, as Hightower et al. [4] suggest, uncertainty
should be preserved and not abstracted so that measurements at
higher levels should be as correct as at the sensor level. Using
our approach, situations such as “meeting” can be modelled
in a generic manner. However, instances of these, such as “in-
meeting”, are more closely tied to applications. The reason
for this is that the influence of individual contexts on a
situation is not uniform. Therefore, we cannot model instances
in a system-wide manner—they are application-specific. “in-
meeting” may have different requirements in triggering a
severe behaviour as opposed to a less severe one. Due to
these differences in severity, a single weighting scheme for
the context constraints of a situation is insufficient.

This places a larger burden on the developer, than with the
use of decoupled, reusable situations, although the benefits in
terms of flexibility are much greater. The burden is not as
great as that of reacting to context directly in applications,
however. Loke et al. [5], in arriving at a certainty measure for
a “belief”, treat each fact supporting or opposing the belief as
equal when arriving at a single measure. We take a step further
and acknowledge that not only do applications require different
uncertainty thresholds for chunks of context, but individual
contexts are important from a flexibility standpoint.

Our approach still works on the basis of thresholds. The
lowest value of uncertainty of an individual context represents
the certainty of the situation. The difference, however, is that
we associate relevancies with these contexts in order to weight
the effect that they have in determining this measure. This
has two notable effects: if any single context is of critical
importance, and has low certainty, our model will have little
effect; if a single context is of critical importance, and has high
certainty, while a less important context has a low certainty,
the latter will get boosted up making the action more likely to
occur. This has the effect of making the system safely flexible
where possible but robust and reliable when necessary. Our
model provides the flexibility to implement applications such
as switching the lights on, for example, when the importance
of the service outweighs that of the certainty of a persons
presence. Other systems do not provide the flexibility required
to make this possible. An application can be made more
uncertainty-conscious by simply raising the influence of an
important context.

Programming with fine-grained data such as individual con-
texts makes application logic very cumbersome and difficult
to maintain. Using our approach, an application developer can
instantiate a generic situation and customise it with relevance
values. Situations are more natural abstractions to use when
programming context-aware systems, and are kept separate
from the application logic. As a result, any changes that the
application designer wishes to make to tune relevance values
will not affect the program code. A limitation of this approach
is that more processing is required in the middleware. With
the customisation of situations to applications, we increase the
amount of situations that must be reasoned about.

Our approach to handling uncertainty in this way also
paves the way for an aspect of user-programming of these
systems. Situations provide a more natural means for users to
understand the merge between the physical and virtual world.
The model that we use would allow them to easily tweak these
relevancies based on their own experience of the system.

Another issue with our approach is that of composition
of situations. In theory it is possible for a situation to be
composed of other situations. As the hierarchy increases, the
complexity and burden placed on the developer to associate
relevance values with each context constraint could potentially
become unreasonable. Perhaps there are approaches that could
be taken to deal with this such as the application of our model
only at the highest abstraction. This is something that we must
look into in the future.
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V. CONCLUSIONS AND FUTURE WORK

Uncertainty is a major issue in pervasive computing due to
the inaccuracies and imprecisions inherent in raw sensor data.
Although research has looked at dealing with uncertainties at
the level of context, there is a need for a different approach
when dealing with uncertainty at the level of situations.
Research has shown that uncertainty measures should be
preserved from the sensor level up to higher abstractions.
Furthermore, the differences in severity of context-aware be-
haviours places non-uniform requirements on the level of
certainty required by events that trigger them. We have shown
that as higher-level abstractions of context are composed of
finer-grained events, there is a need at the application level to
correlate the uncertainty requirement of events encapsulated
in these abstractions with the severity of behaviours that they
trigger.

In this paper we have illustrated a first-cut approach to
dealing with uncertainty at the level of situations. By intro-
ducing context constraints and application-specific instances
of situations, we can arrive at a measure of uncertainty for
situations that takes into account a weighting scheme on
individual contexts, provided by the application. Context-
aware adaptations become more flexible in their requirements
of certainty, while remaining safe when the consequences of
an action are severe.

While our approach has substantial benefits, it also makes
apparent some drawbacks and issues, which we wish to look
further into in the future. Also, as it is a first-cut approach,
we wish revisit some aspects of its design and implementation
in the future. In particular, we wish to further analyse and
evaluate the relevance metric that we use. Moreover, we
wish to do an evaluation based on a comparison between

situations from the physical world and perceived situations
and certainty values in the virtual world. We also wish to
evaluate the correlation between severity levels of context-
aware behaviours, and the realisation of situations that trigger
those behaviours.
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